Bicuspidie Aortique et Anévrisme de l'Aorte Ascendante : surveillance et prise en charge

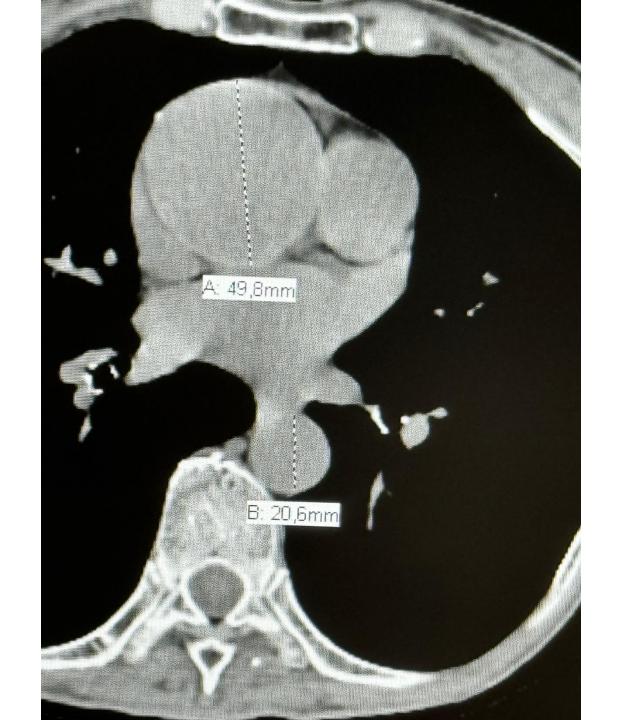
A Vincentelli

Service de Chirurgie Cardiaque Institut Cœur Poumon

Guidelines

Traitement Chirurgical


- Chirurgie réglée : le choix de la technique, du substitut
- Chirurgie des syndromes aortiques aigus


Conclusion

• Femme 70 ans, HTA, 1m77, 54 kg

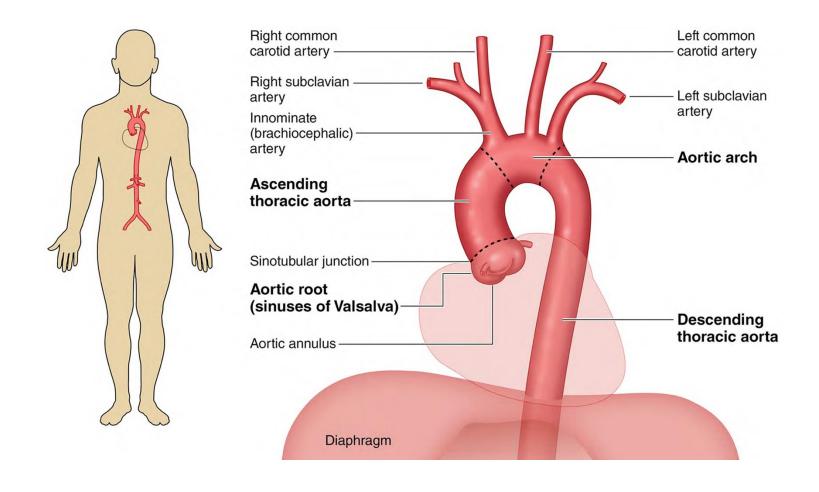
• Découverte fortuite dilatation Aorte Ascendante segment 1

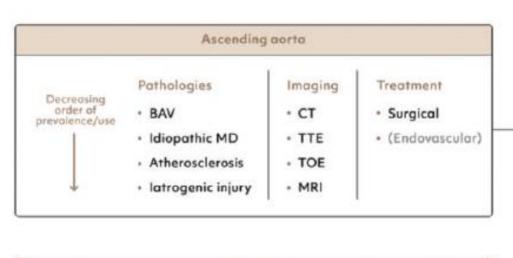
Valve aortique semble tricuspide

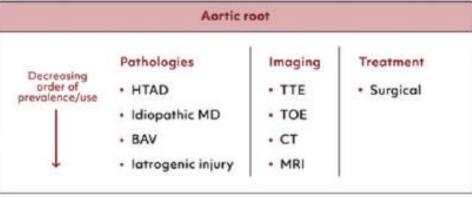
Circulation

ACC/AHA CLINICAL PRACTICE GUIDELINE

2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines

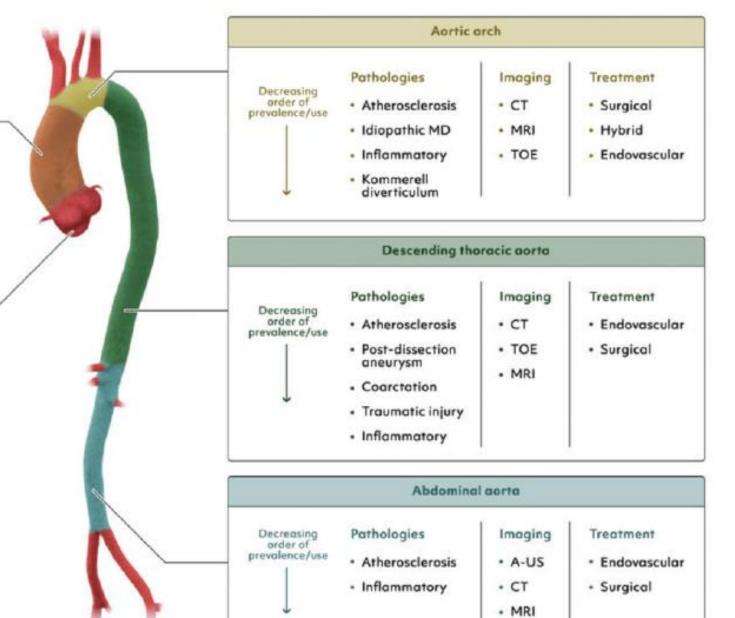

Writing Committee Members*

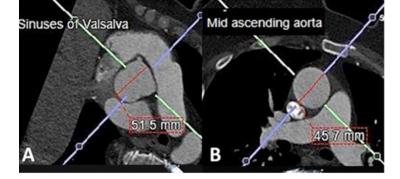

Eric M. Isselbacher, MD, MSc, FACC, Chair; Ourania Preventza, MD, MBA, Vice Chair;
James Hamilton Black III, MD, DFSVS, Vice Chair; John G. Augoustides, MD, FAHA†; Adam W. Beck, MD, DFSVS;
Michael A. Bolen, MD‡; Alan C. Braverman, MD, FACC; Bruce E. Bray, MD, FACC§; Maya M. Brown-Zimmerman, MPH||;
Edward P. Chen, MD, FAHA; Tyrone J. Collins, MD, MSCAI, FACC, FAHA, FSVM¶; Abe DeAnda Jr, MD, FAHA;
Christina L. Fanola, MD, MSc; Leonard N. Girardi, MD, FAHA#; Caitlin W. Hicks, MD, MS, FSVS**; Dawn S. Hui, MD;
William Schuyler Jones, MD, FACC††; Vidyasagar Kalahasti, MD, FACC; Karen M. Kim, MD, MS‡‡; Dianna M. Milewicz, MD, PhD;
Gustavo S. Oderich, MD; Laura Ogbechie, MSN; Susan B. Promes, MD, MBA; Elsie Gyang Ross, MD, MSc;
Marc L. Schermerhorn, MD, DFSVS§§; Sabrina Singleton Times, DHSc, MPH||||; Elaine E. Tseng, MD, FAHA;
Grace J. Wang, MD, MSCE; Y. Joseph Woo, MD, FACC, FAHA††


Cite this article as: Czerny M, Grabenwöger M, Berger T, Aboyans V, Della Corte A, Chen EP et al. EACTS/STS Guidelines for diagnosing and treating acute and chronic syndromes of the aortic organ. Eur J Cardiothorac Surg 2024; doi:10.1093/ejcts/ezad426.

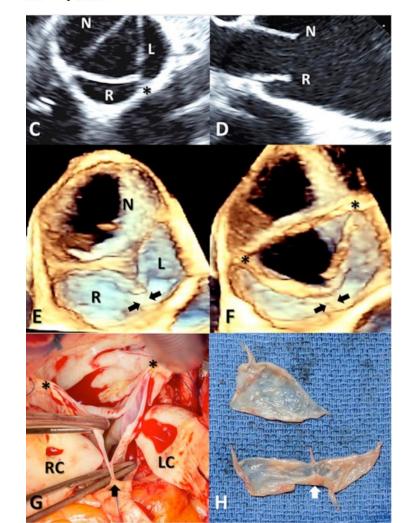
EACTS/STS Guidelines for diagnosing and treating acute and chronic syndromes of the aortic organ

Authors/Task Force Members: Martin Czerny (Co-Chairperson) (Germany), Martin Grabenwöger (Co-Chairperson) (Austria), Tim Berger (Task Force Coordinator), Victor Aboyans (France), Alessandro Della Corte (Klaly), Edward P. Chen (USA), Nimesh D. Desai (USA), Julia Dumfarth (Klaustria), John A. Elefteriades (USA), Christian D. Etz (Germany), Karen M. Kim (USA), Maximilian Kreibich (Germany), Mario Lescan (Germany), Luca Di Marco (Italy), Andreas Martens (Germany), Carlos A. Mestres (South Africa), Milan Milojevic (Gerbia), Christoph A. Nienaber (UK), Gabriele Piffaretti (Italy), Ourania Preventza (USA), Eduard Quintana (Spain), Bartosz Rylski (Germany), Christopher L. Schlett (Germany), Florian Schoenhoff (Switzerland), Santi Trimarchi (Italy) and Konstantinos Tsagakis (Germany), EACTS/STS Scientific Document Group



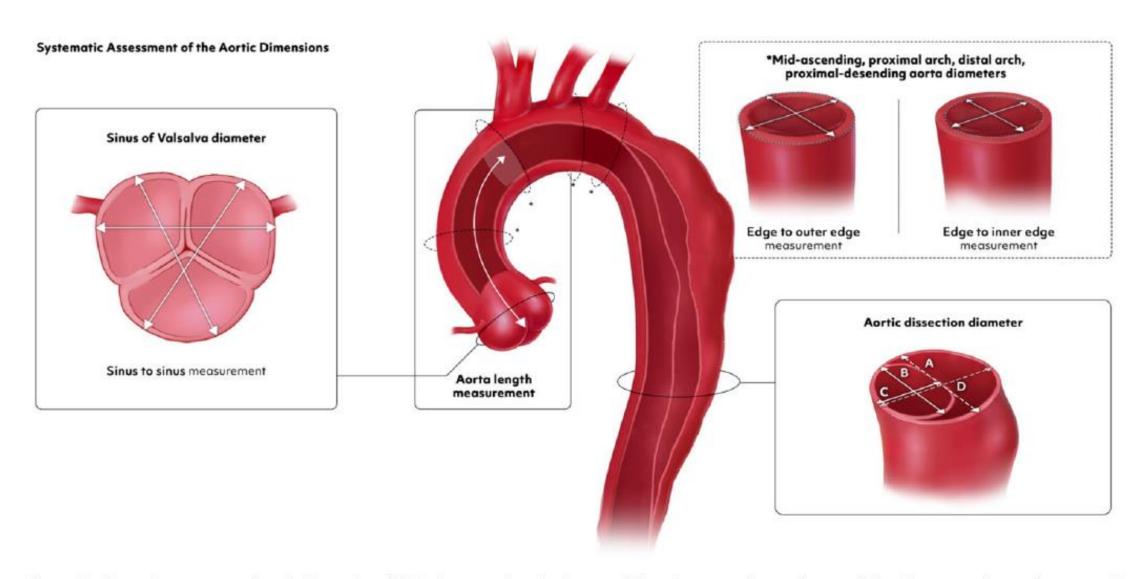
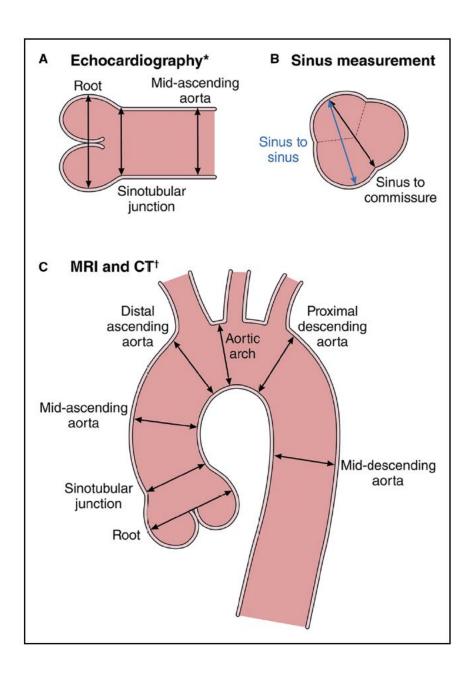
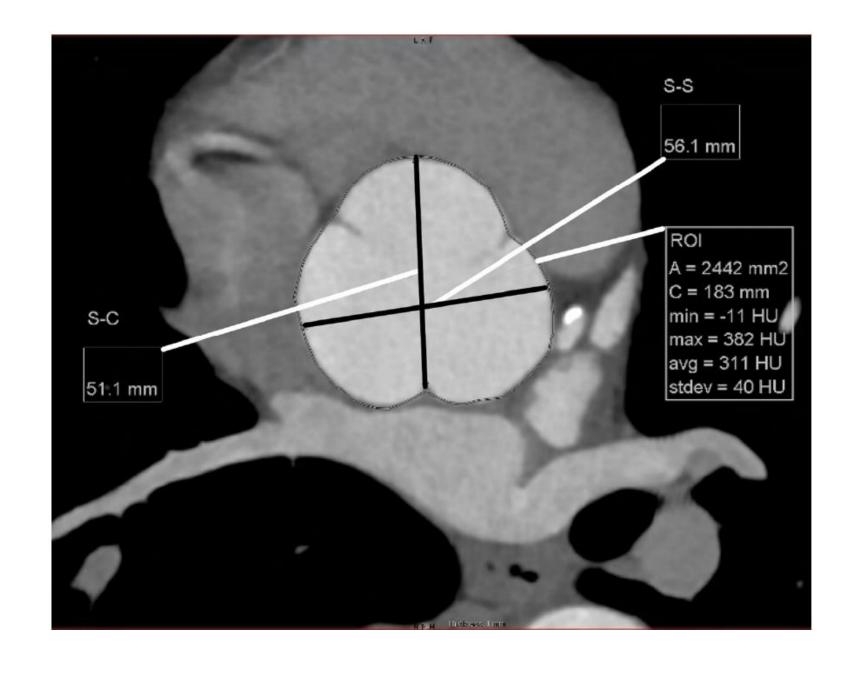

Central Figure: The Aortic Organ.

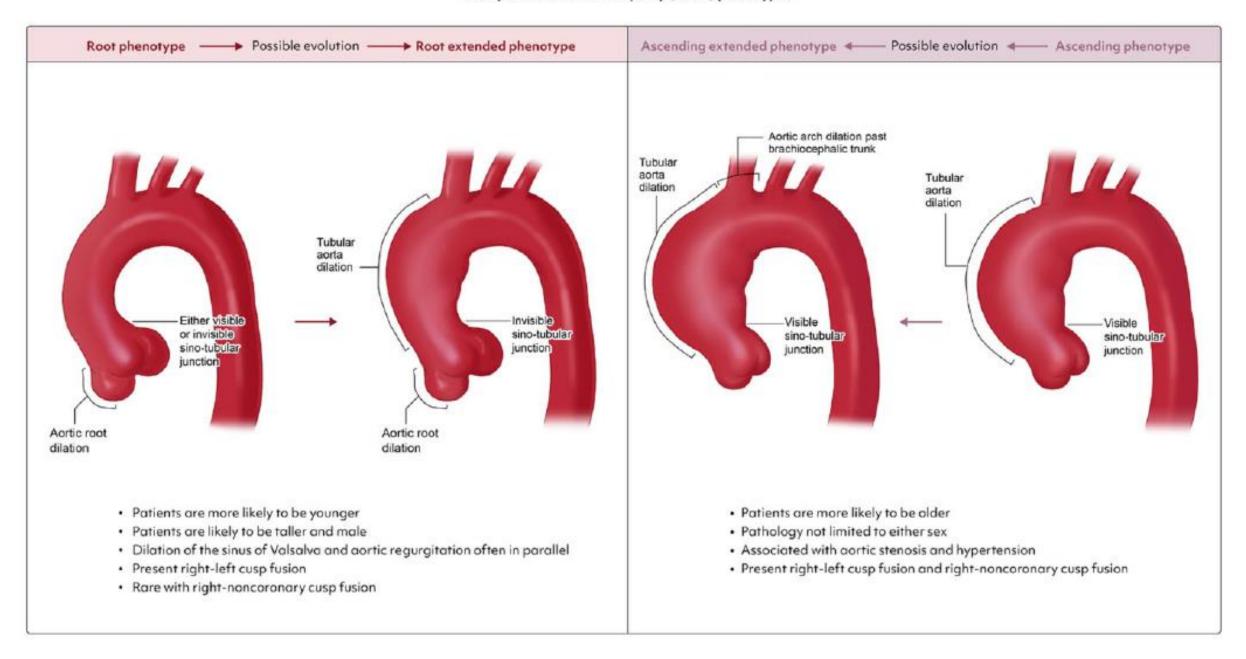
Main pathologies, most used imaging modalities and treatment options for each segment of the aorta.


A-US= abdominal ultrasound; BAV= bicuspid aortic valve; CT= computed tomography; HTAD= heritable thoracic aortic disease; MD= medial degeneration; MRI= magnetic resonance imaging; TOE= trans-oesophageal echocardiography; TTE= trans-thoracic echocardiography

Formes « frustres » BICUSPIDIE

ons **<**\$ Share ▼


Figure 10: Systemic assessment of aortic dimensions. (A) Maximum total aortic diameter, (B) maximum true lumen diameter, (C) minimum true lumen diameter and (D) minimum total aortic diameter.

Les bicuspidies aortiques

Bicuspid aortic valve aortopathy (BAVA) phenotypes

Recommendations for BAV Aortopathy Interventions: Replacement of the Aorta in Patients With BAV
Referenced studies that support the recommendations are summarized in the Online Data Supplement.

COR	LOE	Recommendations
1	B-NR	 In patients with a BAV and a diameter of the aortic root, ascending aorta, or both of ≥5.5 cm, surgery to replace the aortic root, ascending aorta, or both is recom- mended.¹⁻³
2a	B-NR	2. In patients with a BAV and a cross-sectional aortic root or ascending aortic area (cm²) to height (m) ratio of ≥10 cm²/m, surgery to replace the aortic root, ascending aorta, or both is reasonable, when performed by experienced surgeons in a Multidisciplinary Aortic Team. ^{3,4}
2a	B-NR	3. In patients with a BAV, a diameter of the aortic root or ascending aorta of 5.0 cm to 5.4 cm, and an additional risk factor for aortic dissection (Table 14), surgery to replace the aortic root, ascending aorta, or both is reasonable, when performed by experienced surgeons in a Multidisciplinary Aortic Team. ^{1,5}
2a	B-NR	4. In patients with a BAV who are undergoing surgical aortic valve repair or replacement, and who have a diameter of the aortic root or ascending aorta of ≥4.5 cm, concomitant replacement of the aortic root, ascending aorta, or both is reasonable, when performed by experienced surgeons in a Multidisciplinary Aortic Team. ^{1,6}
2b	B-NR	5. In patients with a BAV, a diameter of the aortic root or ascending aorta of 5.0 cm to 5.4 cm, no other risk factors for aortic dissection (Table 14), and at low surgical risk, surgery to replace the aortic root, ascending aorta, or both may be reasonable, when performed by experienced surgeons in a Multidisciplinary Aortic Team. ^{1,2,5}

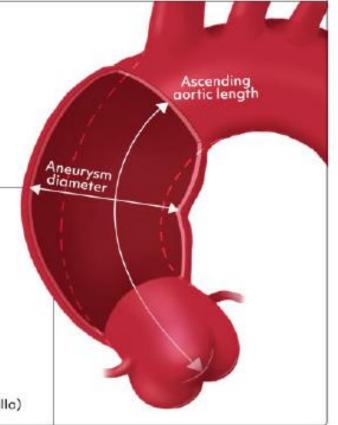
Table 14. Risk Factors for Aortic Dissection

Family history of aortic dissection
Aortic growth rate ≥0.3 cm/y
Aortic coarctation
"Root phenotype" aortopathy

Petite taille: SAo /Taille: >10 cm²/m

Thresholds for intervention in aortic root and ascending aortic aneurysm

Tricuspid aortic valve (TAV)

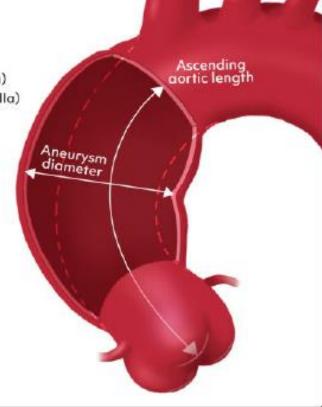

Thresholds ascending phenotype:

- ·≥55mm(I)
- ·>52mm (IIa)
- ·≥50mm in low-risk patients with RF* (IIb)
- ≥45mm when undergoing AV surgery (IIa)

Thresholds root phenotype:

- ·≥55mm (I)
- ·≥50mm in low-risk patients (IIa)
- .≥45mm when undergoing AV surgery (IIa)

Bicuspid aortic valve (BAV)


Thresholds ascending phenotype:

- +≥55mm (I)
- ·>52mm (IIa)
- · ≥50mm in low-risk patients with RF (IIa)
- ·≥45mm when undergoing AV surgery (IIa)

Thresholds root phenotype:

- ·≥50mm (I)
- ≥45mm when undergoing AV surgery (IIa)

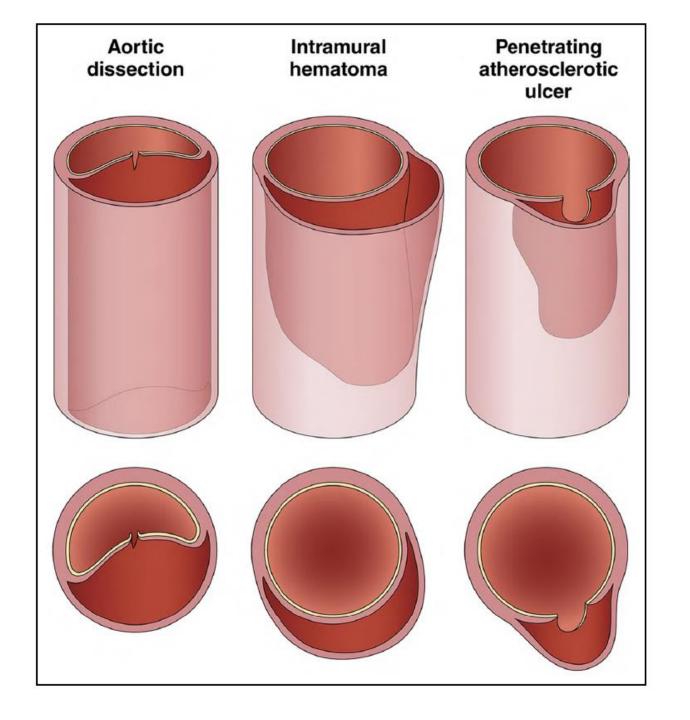
*Risk factors (RF)

Length of ascending aorta ≥11cm

>3mm diameter increase per year

Height <1.69m

Age <50 years old


Arterial hypertension

Aortic root

Recommendation Table 22: Therapeutic options: aortic root

Recommendations	Class ^a	Level ^b	Ref ^c
For aortic dilatations and aneurysms involving the aortic root with a structurally diseased aortic valve, replacement of the aortic valve and sinuses with coronary ostia direct reimplantation (modified Bentall operation) is recommended.	ı	В	[559–561]
Valve-sparing root replacement should be considered for patients with a non-diseased tricuspid aortic valve and dilated root, especially young patients, if performed by expe- rienced surgeons.	IIa	В	[562, 563]
Valve-sparing root replacement may be considered for patients with a non- diseased bicuspid aortic valve and dilated root if performed by surgeons with specific expertise in aortic valve repair.	IIb	В	[564]

Les syndromes aortiques aigus

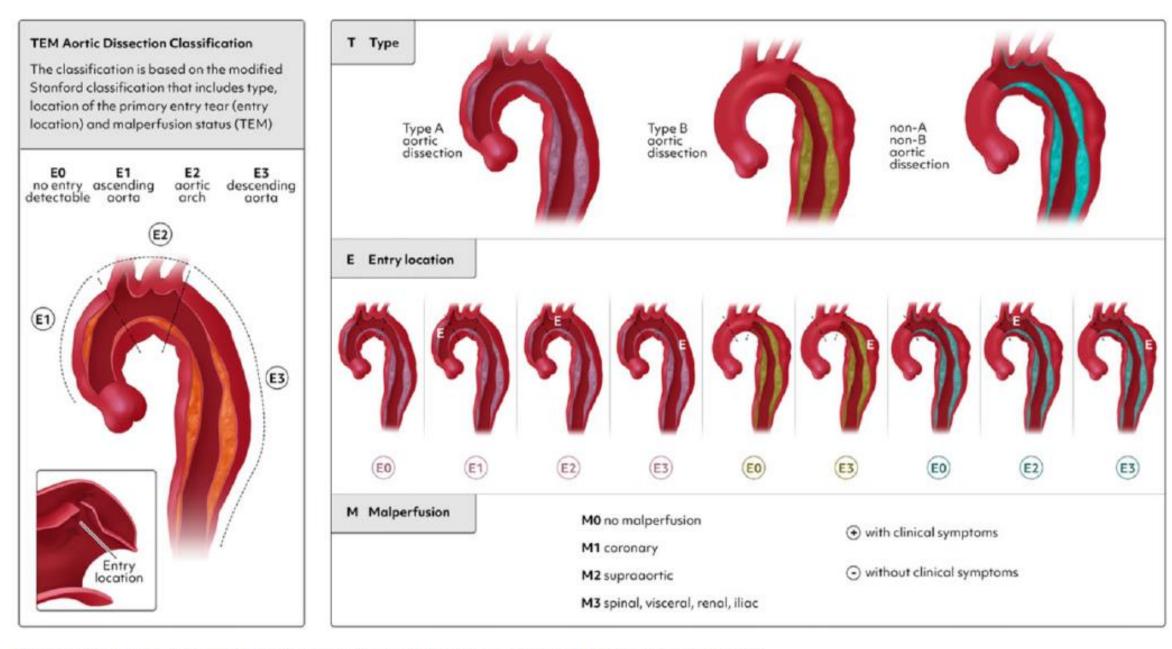


Figure 6: Type, entry, malperfusion classification for acute aortic dissection. TEM: type, entry, malperfusion.

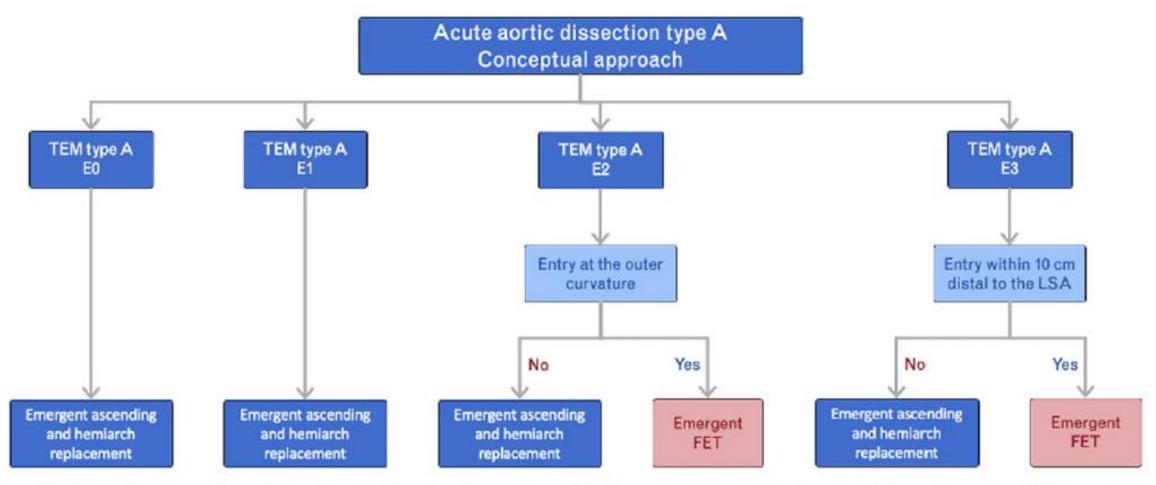
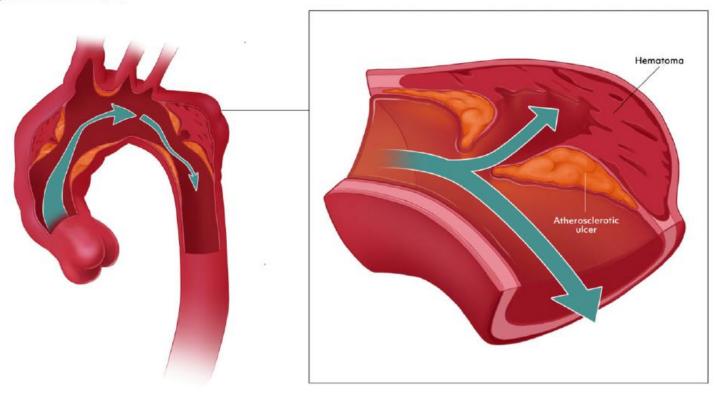


Figure 11: Extent of treatment for acute type A aortic dissection. E0, no entry visible; E1, ascending entry; E2, arch entry; E3 descending entry; FET: frozen elephant trunk; LSA: left subclavian artery; TEM: type, entry, malperfusion.

Type A intramural haematoma.


Recommendation Table 8: Acute aortic diseases: type A intramural haematoma

Recommendations	Class ^a	Level ^b	Ref ^c
In patients with acute type A IMH with complications or high-risk features, emergency surgery is recommended.	-	В	[283, 287-290]
Optimal medical therapies and serial imaging may be considered in patients with type A IMH in the absence of high-risk features.	IIb	С	-
In selected patients with acute type A IMH without high-risk features but a tear in the descending aorta, TEVAR may be considered in addition to OMT in specialized centres.	Ilb	C	-

Table 4: High-risk features in intramural haematomas

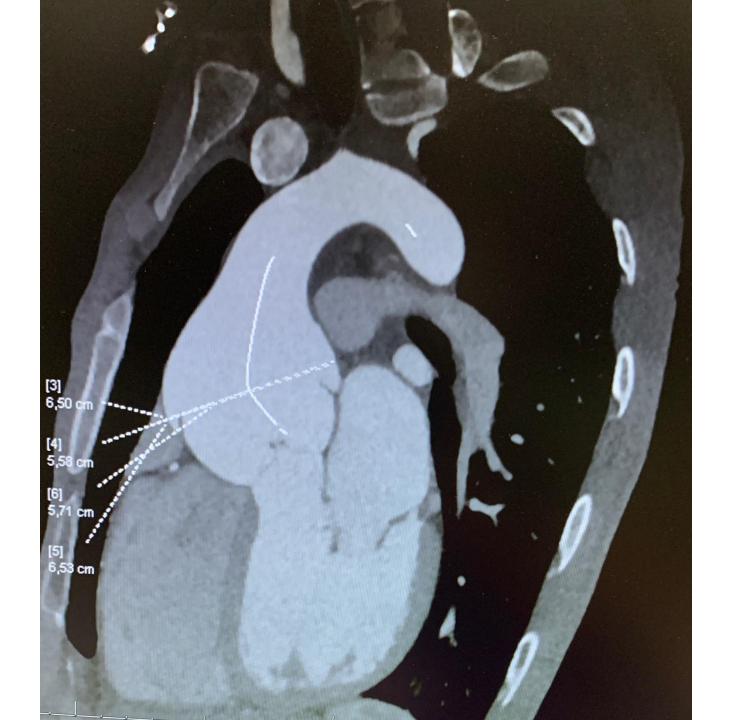
Age >70 years [293, 294]		
Initial aortic diameter >45 mm [293, 295]		
Mean aortic diameter growth rate ≥5 mm/year [296]		
Wall thickness of involved segment ≥10 mm [297]		
Pleural effusion based on Hounsfield units [298, 299]		
Presence of aortic ulcer or ulcer-like projection [294, 300]		

Penetrating Atherosclerotic Ulcer (PAU)

Penetrating atherosclerotic ulcer.

Recommendation Table 10: Acute aortic diseases: penetrating atherosclerotic ulcer

Recommendations	Class ^a	Level ^b	Ref ^c
In patients with PAUs in the ascending aorta and the presence of IMH or rupture, urgent aortic repair is recommended.	1	В	[289]
In patients with high-risk PAUs located in the distal arch or descending aorta, TEVAR should be considered if anatomically suitable.	lla	В	[310]
In patients with high-risk PAUs located in the distal arch or descending aorta unsuitable for TEVAR, open surgical repair should be considered after careful evaluation of operative risk.	lla	В	[311]


Marfan, Loyes-Dietz, Turner.....

Marfan Syndrome

Recommendations for Marfan Syndrome Interventions: Replacement of the Aortic Root in Patients With Marfan Syndrome Referenced studies that support the recommendations are summarized in the Online Data Supplement.

COR	LOE	Recommendations
1	B-NR	 In patients with Marfan syndrome and an aortic root diameter of ≥5.0 cm, surgery to replace the aortic root and ascending aorta is recommended.¹⁻⁴
2a	B-NR	2. In patients with Marfan syndrome, an aortic root diameter of ≥4.5 cm, and features associated with an increased risk of aortic dissection (see Table 10), surgery to replace the aortic root and ascending aorta is reasonable, when performed by experienced surgeons in a Multidisciplinary Aortic Team. ^{1,3,4}
2a	C-LD	3. In patients with Marfan syndrome and a maximal cross-sectional aortic root area (cm2) to patient height (m) ratio of ≥10, surgery to replace the aortic root and ascending aorta is reasonable, when performed by experienced surgeons in a Multidisciplinary Aortic Team. ⁵
2b	C-LD	4. In patients with Marfan syndrome and an aortic diameter approaching surgical threshold, who are candidates for valve-sparing root replacement (VSRR) and have a very low surgical risk, surgery to replace the aortic root and ascending aorta may be reasonable when performed by experienced surgeons in a Multidisciplinary Aortic Team. ²⁻⁴

Table 10. Features Associated With Increased Risk of Aortic Complications in Marfan Syndrome

Family history of aortic dissection

Rapid aortic growth (≥0.3 cm/y)

Diffuse aortic root and ascending aortic dilation¹⁴

Marked vertebral arterial tortuosity¹⁵

Recommendation Table 16: Heritable thoracic aortic disease

Recommendations	Class ^a	Level ^b	Ref ^c
Genetic testing is recommended in patients with thoracic aortic disease <60 years of age, family history of TAD, arterial aneurysms in other segments and those with syndromic features.	1	В	[169, 372, 373]
Testing of family members is recom- mended by simpler, more cost-efficient Sanger sequencing of only the suspect genetic area.	-	v	1
Marfan syndrome			
In patients with Marfan syndrome, surgery on the aortic root or ascending aorta is recommended at a diameter of ≥50 mm.	-	В	[374, 375]
In patients with Marfan syndrome and high-risk features,* surgery on the aortic root or ascending aorta should be considered at a diameter of ≥45 mm.	lla	В	[374, 375]
In patients with Marfan syndrome without high-risk features with a high likelihood of undergoing valve-sparing aortic root replacement and very low surgical risk, surgery on the aortic root or ascending aorta may be considered at a diameter of \geq 45 mm when performed by an experienced aortic team.	IIb	C	•
In patients with Marfan syndrome, surgery of the aortic arch, descending thoracic aorta or abdominal aorta should be considered at a diameter of ≥50 mm of the respective aortic segment.	lla	с	-

Loeys-Dietz syndrome			
In patients with Loeys–Dietz syndrome, indication for surgery is recommended based on the specific genetic variant, aortic diameter, aortic growth rate, family history, history of aortic events, patient age and other individual patient-related factors and discussed by a multidisciplinary aortic team.	-	С	-
In patients with Loeys-Dietz syndrome attributable to a pathogenic variant in TGFBR1 or TGFBR2, surgery on the aortic root or ascending aorta is recommended at a diameter of ≥45 mm.	-	С	-
In patients with Loeys-Dietz syndrome attributable to a pathogenic variant in TGFBR1 and high-risk features,* surgery on the aortic root or ascending aorta may be considered at a diameter of ≥40 mm.	IIb	U	-
In patients with Loeys-Dietz syndrome attributable to a pathogenic variant in TGFBR2 and high-risk features, surgery on the aortic root or ascending aorta should be considered at a diameter of 40 mm.	lla	С	-
In patients with Loeys-Dietz syndrome attributable to a pathogenic variant in TGFB3, surgery on the aortic root or ascending aorta may be considered at a diameter of ≥50 mm.	IIb	с	-
In patients with Loeys-Dietz syndrome attributable to a pathogenic variant in SMAD3, surgery on the aortic root or ascending aorta should be considered at a diameter of \geq 45 mm.	lla	С	-
In patients with Loeys-Dietz syndrome attributable to a pathogenic variant in TGFBR1, TGFBR2 or SMAD3, surgery to replace the intact aortic arch, descending aorta or abdominal aorta at a diameter of \geq 45 mm may be considered.	IIb	U	-
In patients with Loeys-Dietz syndrome attributable to a pathogenic variant in SMAD2 or TGFB2, surgery on the aortic root or ascending aorta may be considered at a diameter of ≥45 mm.	IIb	С	-

Table 13. Surgical Thresholds for Prophylactic Aortic Root and Ascending Aortic Replacement in Nonsyndromic Heritable Thoracic Aortic Disease Based on the Genetic Variant and Additional Risk Factors for Aortic Dissection

COR*	LOE*	Genetic Variant	Risk Factors	Aortic Diameter (cm)
2a	C-LD	ACTA2	No	≥4.5
2b	C-EO	ACTA2	Yest	≥4.2
2b	C-LD	PRKG1	No	≥4.2
2b	C-EO	PRKG1	Yest	≥4.0†

^{*}Patient has risk factors for aortic dissection (family history of type A aortic dissection with minimal aortic enlargement, aortic growth rate ≥0.3 cm/y) or significant valve disease requiring surgery.

†Earlier surgery may be considered in patients with a family history of type A aortic dissection in the setting of no or minimal aortic dilation, aortic growth rate ≥0.3 cm/y, or at the patient's request.

Colors correspond to COR and LOE in Table 2.

COR indicates class of recommendation; and LOE, level of evidence.

Turner

Recommendations for Diagnostic Testing, Surveillance, and Surgical Intervention for Aortic Dilation in Turner Syndrome (Continued)			
COR	LOE	Recommendations	
1	C-EO	5. In patients with Turner syndrome and risk factors for aortic dissection (Table 12), surveillance aortic imaging at an interval depending on the aortic diameter, ASI, and aortic growth rate is recommended (Figure 18).9	
2 a	C-LD	6. In patients with Turnery syndrome who are ≥15 years old and have an ASI of ≥2.5 cm/m² plus risk factors for aortic dissection (Table 12), surgical intervention to replace the aortic root, ascending aorta, or both is reasonable. ^{9,10}	
2b	C-EO	In those without risk factors for aortic dissection, surgical intervention to replace the aortic root, ascending aorta, or both may be considered.	

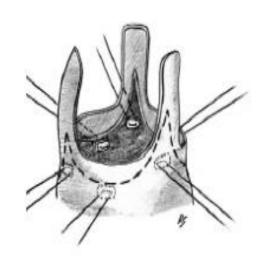
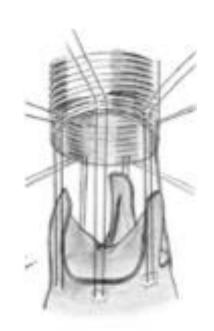
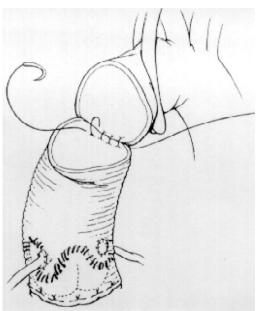
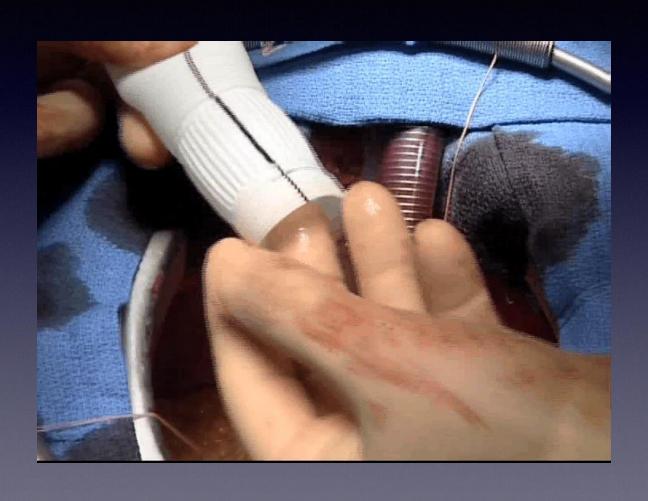

ASI= max aortic diam (cm)/BSA

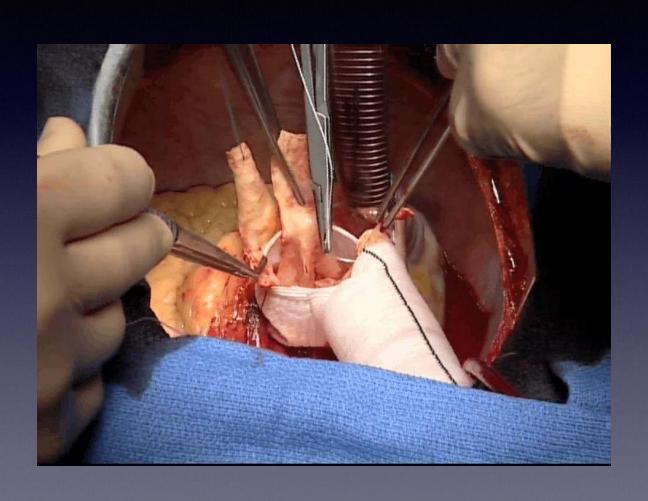

Table 12. Risk Factors for Aortic Dissection in Patients With Turner Syndrome

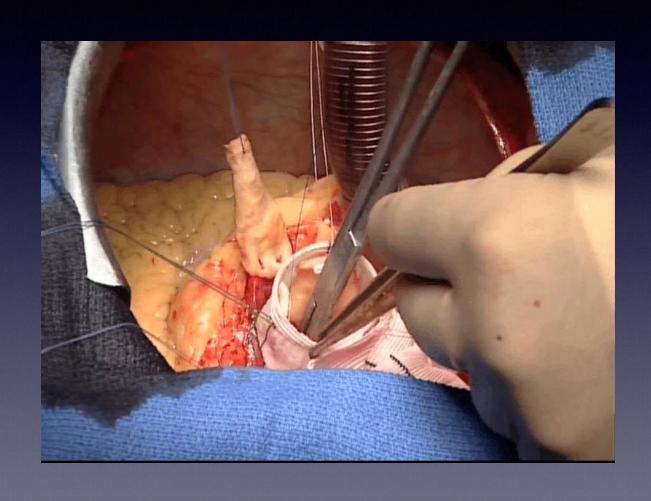

Aortic coarctation	
Aortic dilation	
Bicuspid aortic valve	
Hypertension	


Quelle Chirurgie?

Chirurgie Conservatrice

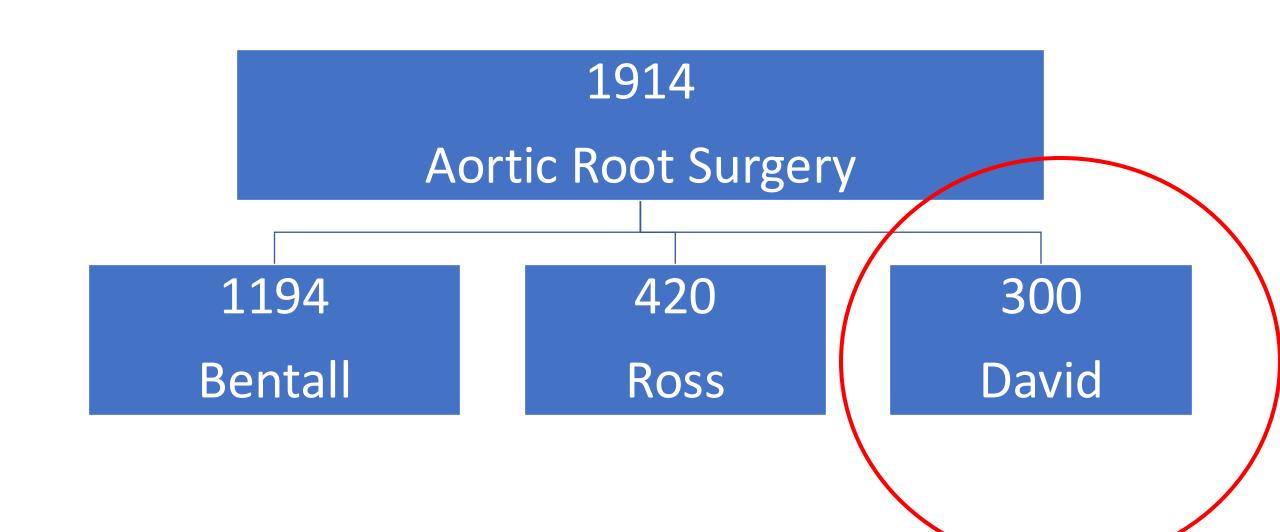





Inclusion de l'anneau

Ré-implantation (1)

Ré-implantation (2)


ETO perop

Résultats à long terme de l'intervention de Tirone David

Expérience Lilloise

January 1998-August 2019

• Median age : 53 (11-80)

• 70% men

• Asymptomatic : 191 (64%)

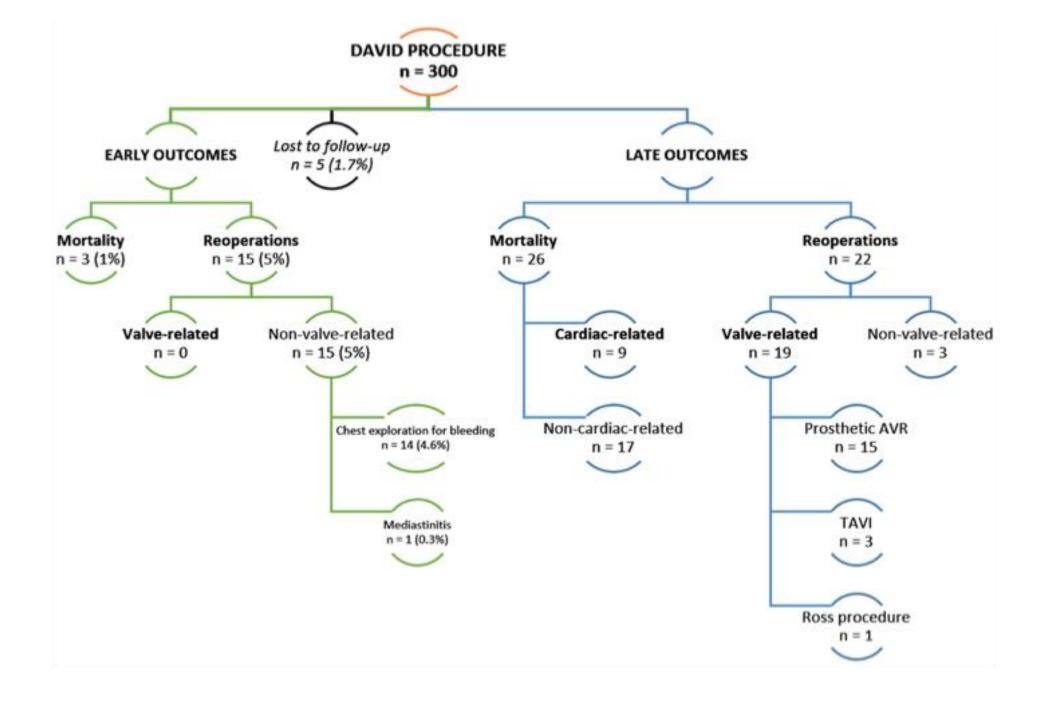
• NYHA III & IV: 11 (3.6%)

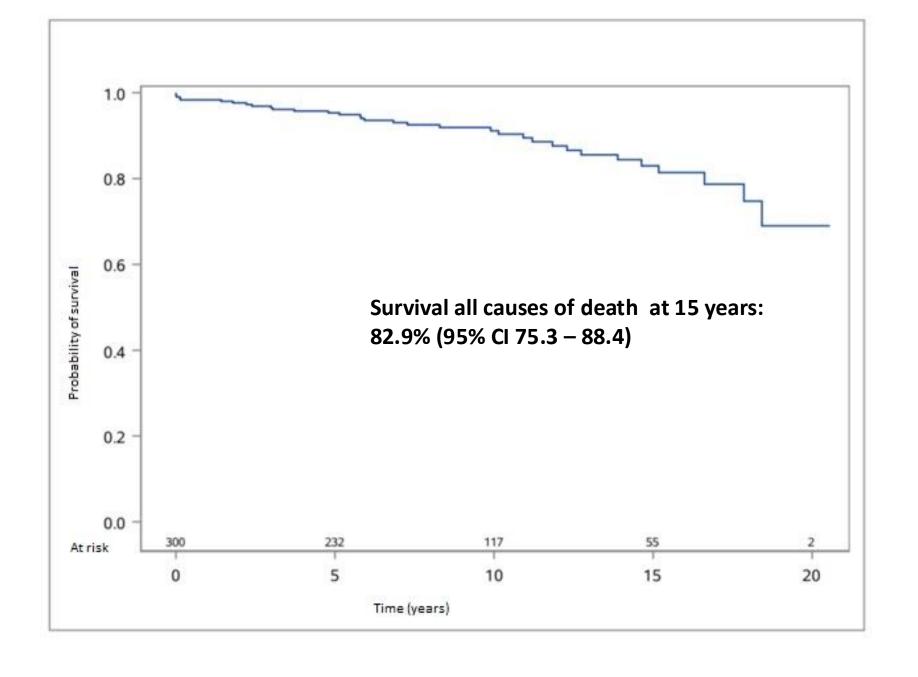
• Aortic Regurgitation ≥ grade 2: 159 (53%)

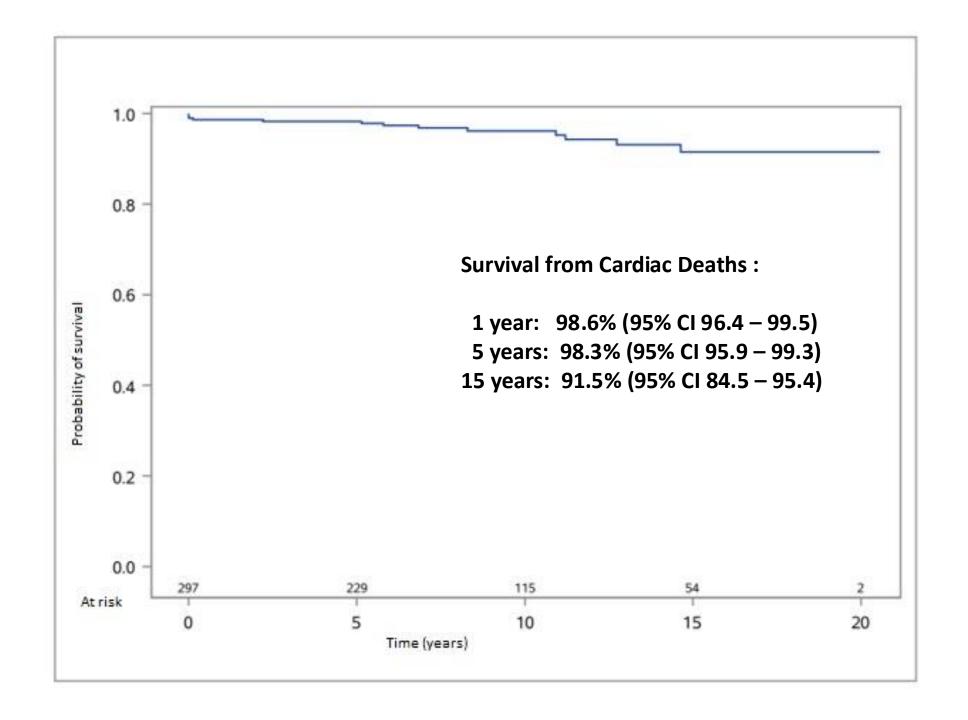
• Median Aorta Diameter (mm): 52 (40-82)

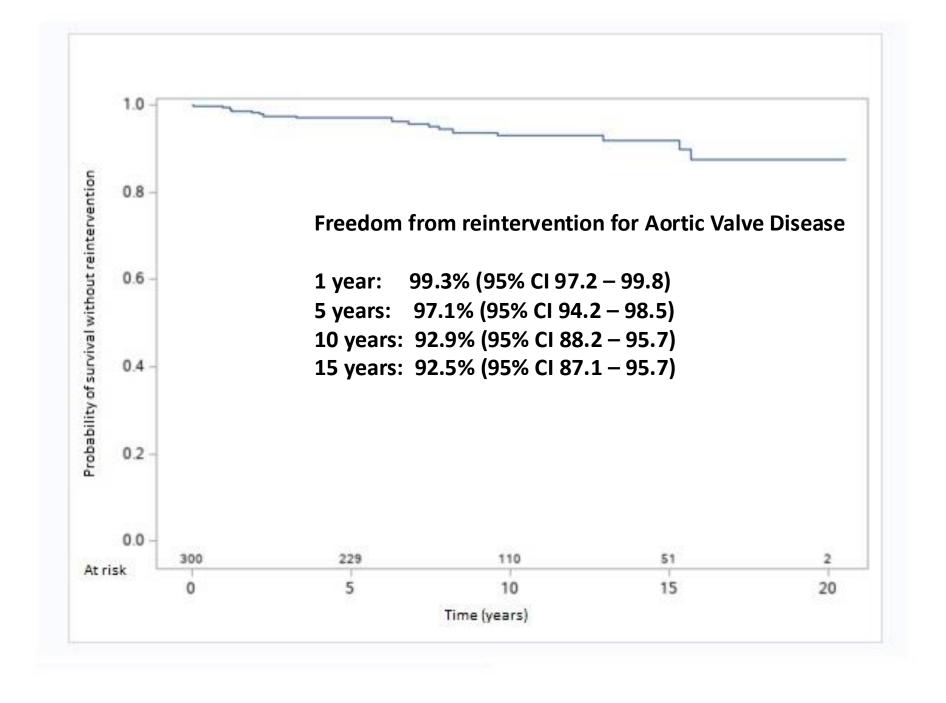
Bicuspid valve: 57 (19%) 18 (6%) Marfan: Acute type A dissection : 10 (3.3%) 7 (2,8%) • Redo (Ross): Chronic dissection: 2 (0,8%)

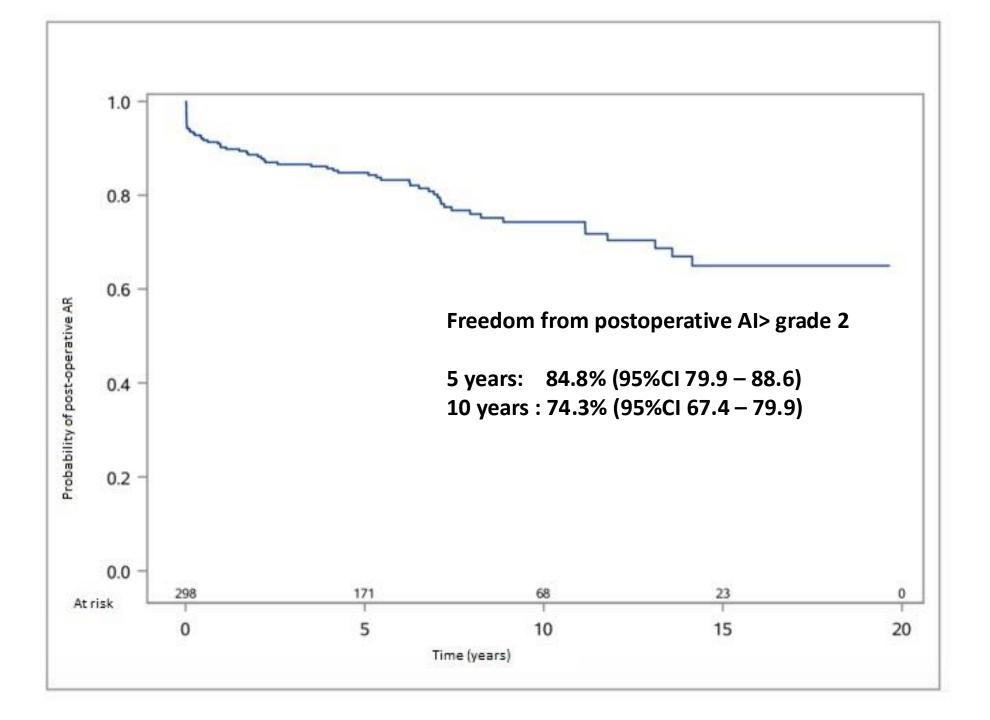
Results

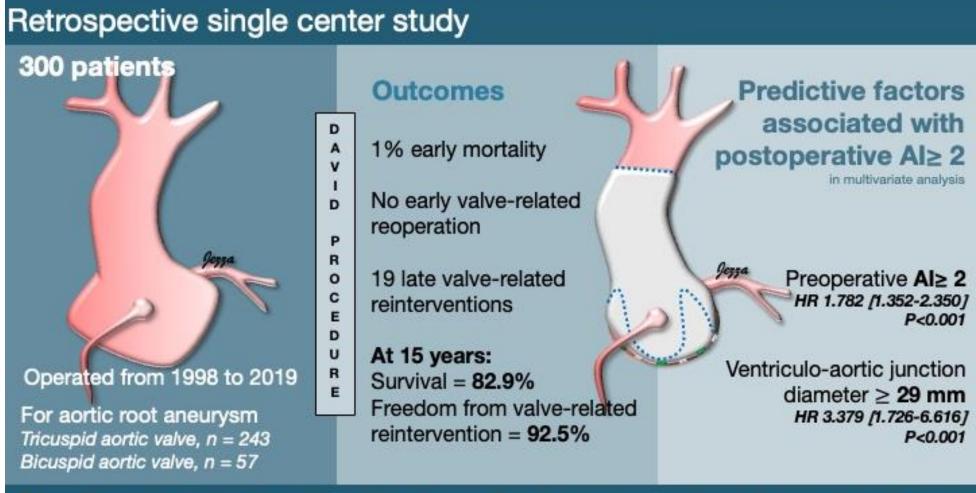

Tricuspid aortic valve repair	n=243
Free margin plication	4 %
• Commisuroplasty	5%
Pericardial patch	0.4%
Bicuspid aortic valve repair	n=57
 Bicuspid aortic valve repair Free margin plication 	n=57 12%


Median time follow up (years)


7.1 (4.1-11.5/max 19.5)


Lost for follow up


5 (1.7%)

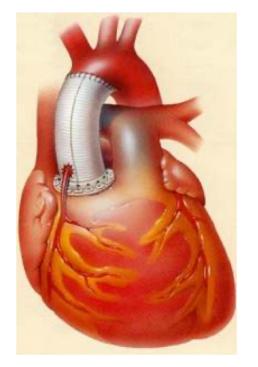


Risks factors for AR>2

Variable	HR	CI95%	p
Preoperative AR ≥ 2	1.782	[1.352-2.350]	0.0001
Ventriculo-aortic junction diameter ≥ 29 mm	3.379	[1.726-6.616]	0.0004

David procedure: a 21-year experience with 300 patients

The David procedure provides excellent outcomes in selected patients


Manganiello et al, 2021

Il faut remplacer la valve aortique

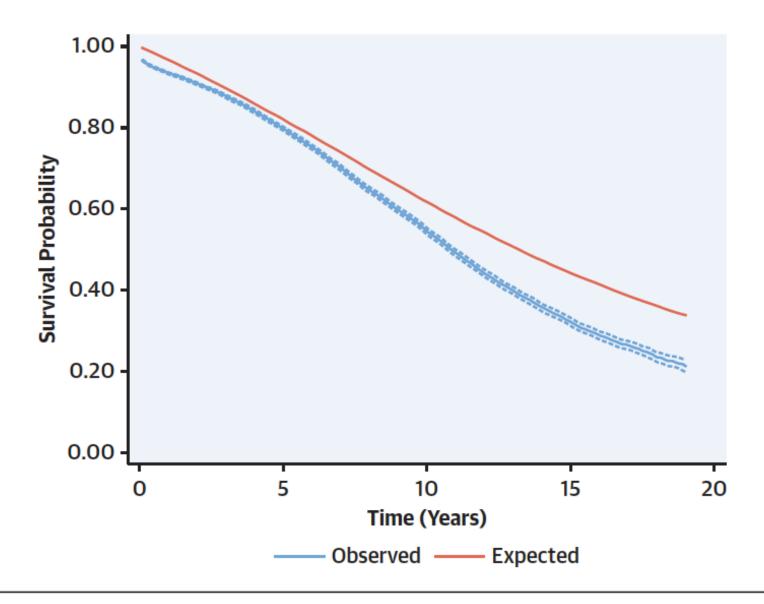
Pourquoi l'intervention de Ross offre une survie postopératoire superposable à la population générale...et pas les autres techniques

Conflit d'intérêt

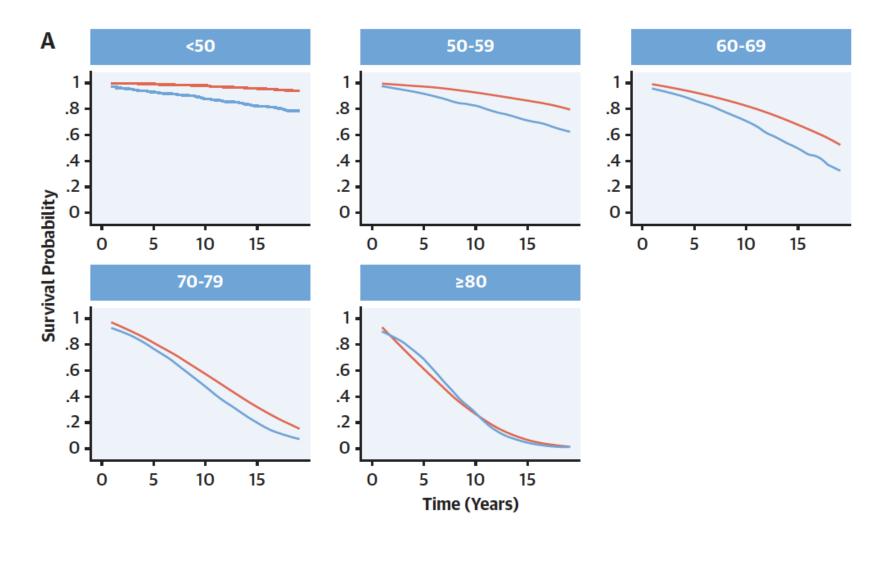
• Je propose toujours en premier choix l'intervention de Ross chez l'adulte jeune souffrant d'un rétrécissement aortique

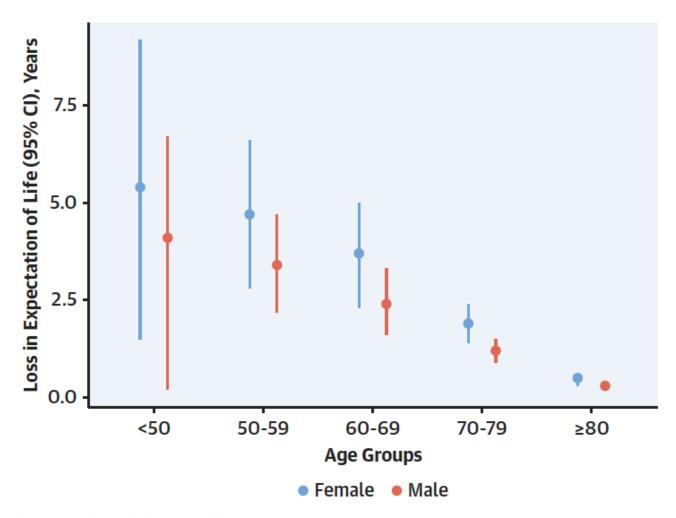
Quelle survie après une chirurgie de la valve aortique ?

Loss in Life Expectancy After Surgical Aortic Valve Replacement


SWEDEHEART Study

Natalie Glaser, MD, PhD, a,b Michael Persson, MD, b,c Veronica Jackson, MD, PhD,b Martin J. Holzmann, MD, PhD,d,e Anders Franco-Cereceda, MD, PhD,b,c Ulrik Sartipy, MD, PhD,c


TABLE 1 Baseline Characteristics in 23,528 Patients Who Underwent Aortic Valve Replacement in Sweden Between 1995 and 2013


Age, yrs	70.7 ± 10.8
Female	9,296 (39.5)
Civil status	
Not married or cohabiting	6,937 (29.5)
Household disposable income, kSEK	213 (145, 310)
Education, yrs	
<10	8,096 (47.6)
10-12	6,107 (35.9)
>12	2,815 (16.5)
Region of birth	
Non-Nordic countries	979 (5.2)
Biological valve prosthesis	15,692 (66.7)
Body mass index, kg/m ²	$\textbf{26.7} \pm \textbf{4.4}$
Diabetes mellitus	3,991 (17.0)
Atrial fibrillation	3,328 (14.1)
Hypertension	5,717 (24.3)
Hyperlipidemia	2,230 (9.5)
Stroke	2,240 (9.5)
Peripheral vascular disease	1,466 (6.2)
Chronic pulmonary disease	1,752 (7.4)
Prior myocardial infarction	3,522 (15.0)
Prior PCI	1,929 (8.2)
Prior major bleeding event	1,205 (5.1)
Alcohol dependency	383 (1.6)
Liver disease	206 (0.9)
Cancer	1,762 (7.5)
eGFR, ml/min/1.73 m ²	
>60	13,140 (66.8)
45-60	4,291 (21.8)
30-45	1,724 (8.8)
15-30	317 (1.6)
<15 or dialysis	201 (1.0)

Heart failure	4,494 (19.1)
Left ventricular ejection fraction, %	
>50	10,187 (72.8)
30-49	3,004 (21.5)
<30	799 (5.7)
Isolated AVR	13,727 (58.3)
Year of surgery	
1995-2000	7,403 (31.5)
2001-2006	7,030 (29.9)
2007-2013	9,095 (38.7)

The observed survival (95% confidence interval) in patients after a ortic valve replacement (blue line) compared with the expected survival of an age-, sex-, and calendar-year-matched Swedish population (red line).

Glaser, N. et al. J Am Coll Cardiol. 2019;74(1):26-33.

The loss in life expectancy (95% confidence interval [CI]) expressed in years according to sex and age categories in 23,528 patients who underwent aortic valve replacement in Sweden between 1995 and 2013.

Mean Fup: 6.8 years (max 19.2 years)

• 30 days mortality: 3.5%; 41% cardiac deaths

After 19 years 37% would have died due to AVR causes

Loss in life expectancy 1.9%

- 4.4 years when < 50 years
- 0.4 years when 80 years and more

Survie et Substitut valvulaire

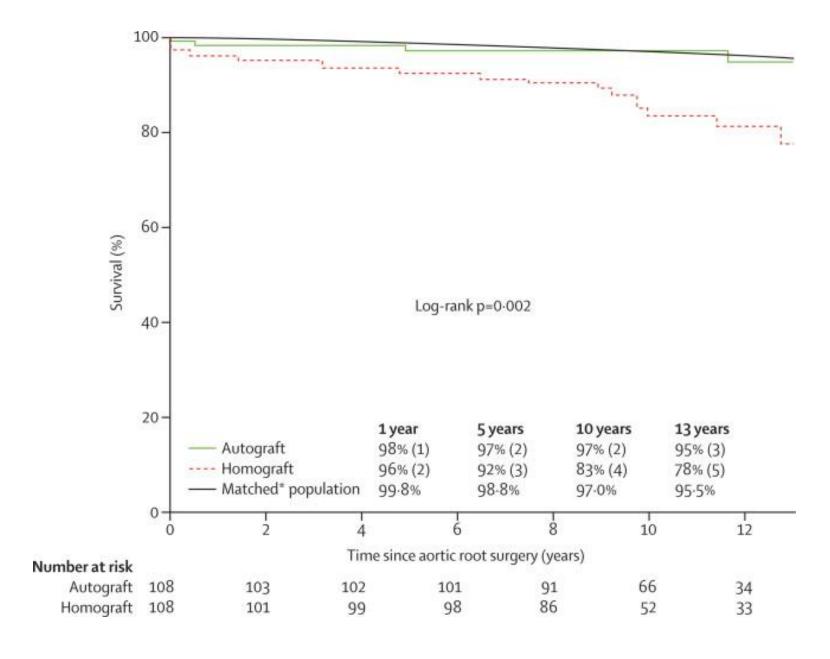
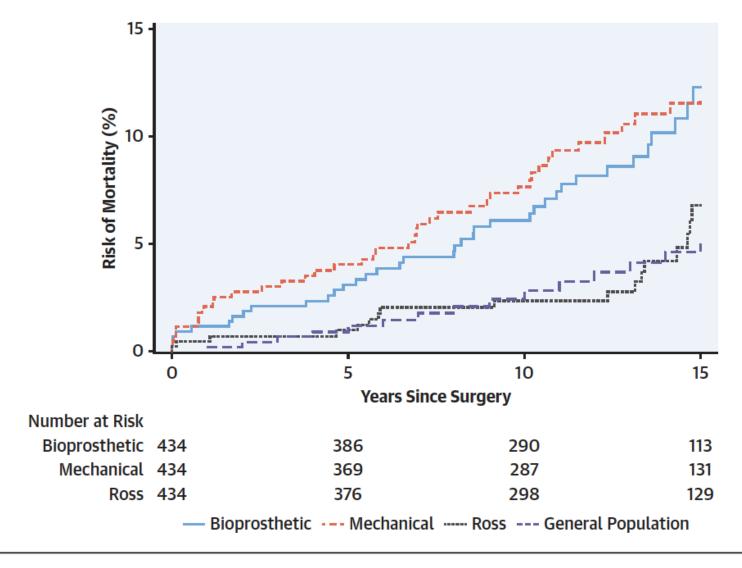
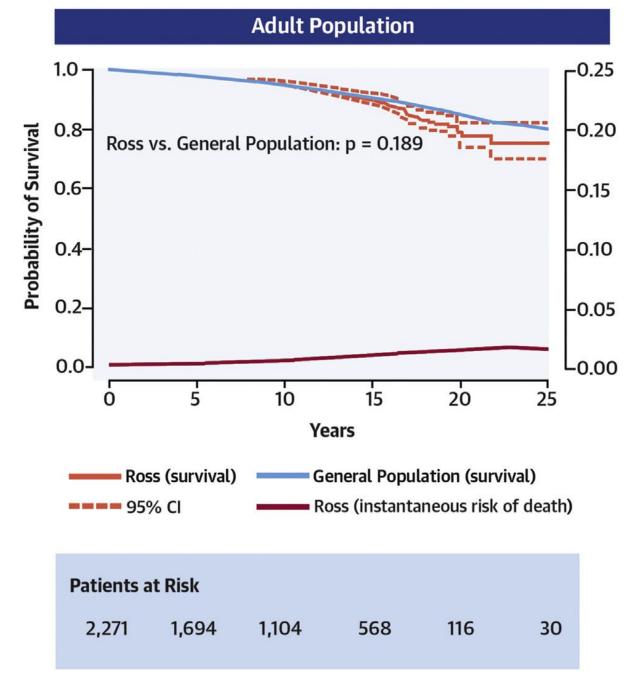
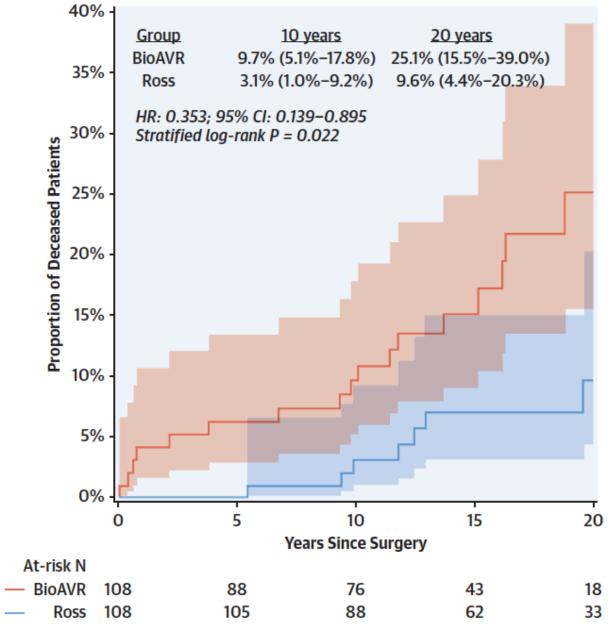
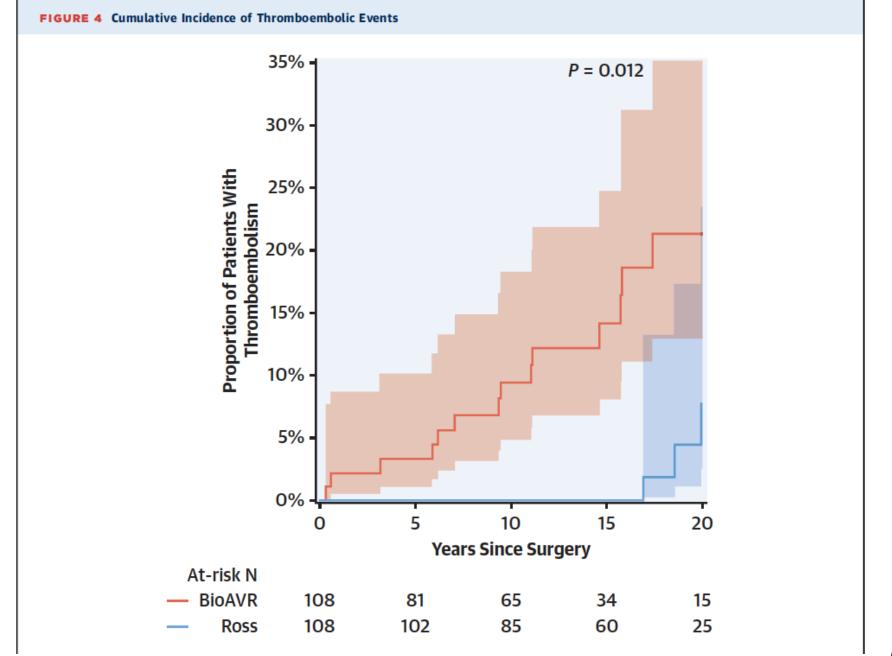




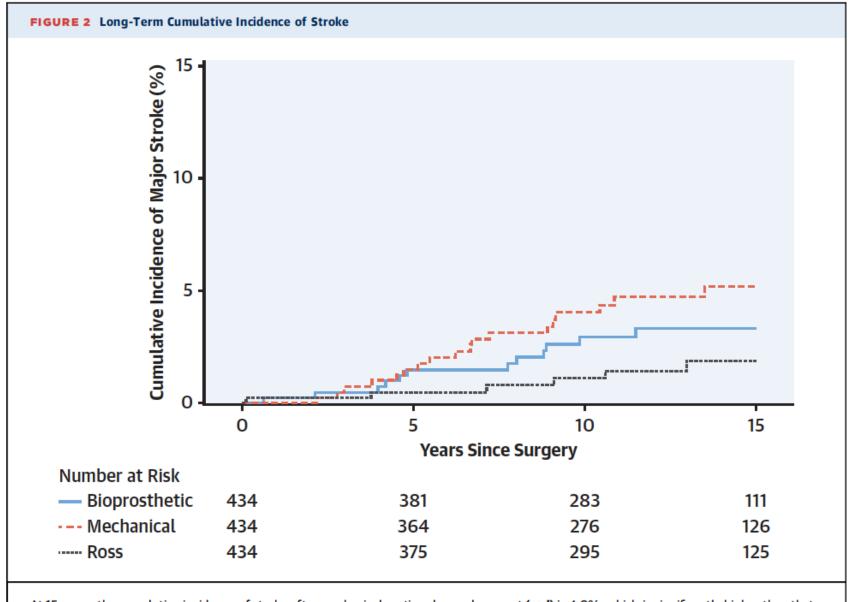
Figure 1. All-Cause Mortality


	Mean			Ross	AVR	IRR IV, Random			Favors	Weigh
Study or Subgroup	Follow-up, y	log (IRR)	SE	Total	Total	(95% CI)		Ross Autograft	Mechanical AVR	%
Randomized trial										
Doss et al, ²⁶ 2005	1.0	0.6931	1.2247	20	20	2.00 (0.18-22.05)	-			3.0
Subtotal (95% CI)				20	20	2.00 (0.18-22.05)				3.0
Heterogeneity: not applicab										
Test for overall effect: $z = 0$.	57 (P=.57)									
Matched/adjusted observation	nal									
Jaggers et al, ²⁷ 1998	1.7	-0.4185	1.5492	22	27	0.66 (0.03-13.71)		-	<u>:</u>	1.9
Concha et al,30 2005	2.5	-1.4023	1.1180	63	62	0.25 (0.03-2.20)	-		<u>: </u>	3.5
Andreas et al, ³² 2014	8.9	-0.9555	0.4019	159	173	0.38 (0.17-0.85)	-			16.4
Mazine et al,33 2016	14.0	-0.4415	0.3498	208	208	0.64 (0.32-1.28)	-		<u>i -</u>	18.9
Sharabiani et al,34 2016	5.3	-0.8544	0.5380	224	468	0.43 (0.15-1.22)	-		!	11.4
Buratto et al, ³⁶ 2018	10.0	-1.0986	0.4644	275	275	0.33 (0.13-0.83)	-			13.8
Subtotal (95% CI)				951	1213	0.45 (0.30-0.67)	-			65.9
Heterogeneity: $\tau^2 = 0.00$; χ^2	= 1.97, df = 5 (P	=.85); I ² = 0)%				-	•		
Test for overall effect: $z = 3$.	88 (P<.001)									
Unmatched/unadjusted obser	vational						-			
Akhyari et al, ³⁹ 2009	3.7	-0.7742	1.6330	18	20	0.46 (0.02-11.32)	_	<u> </u>		1.7
Klieverik et al,37 2006	7.0	-1.4250	0.6567	81	204	0.24 (0.07-0.87)	-			8.5
Zsolt et al,38 2008	5.4	-1.8140	1.5492	17	17	0.16 (0.01-3.40)			<u> </u>	1.9
Mokhles et al,31 2011	6.0	0.3706	0.3469	925	408	1.45 (0.73-2.86)	-	_		19.0
Subtotal (95% CI)				1041	649	0.53 (0.15-1.91)	-		>	31.2
Heterogeneity: $\tau^2 = 0.88$; χ^2	= 7.30, df = 3 (P	=.06); I ² =5	9%				-			
Test for overall effect: $z = 0$.	97 (P=.33)									
Total (95% CI)				2012	1882	0.54 (0.35-0.82)	-			100.0
Heterogeneity: $\tau^2 = 0.13$; χ^2	= 13.95. df = 10	P=.18): I ²	= 28%				-	•		
Test for overall effect: $z = 2$.										
Test for subgroup difference	-	2 (P=.48):	I ² =0%							
		- 02//					0.001	0.1	1 10	100
									Effects, (95% CI)	

At 15 years, the cumulative incidence of all-cause mortality is significantly lower after the Ross procedure (gray) compared with biological aortic valve replacement (blue) (HR: 0.42; P = 0.003) or mechanical aortic valve replacement (red) (HR: 0.45; P = 0.006). Survival after the Ross procedure is equivalent to that of the age-, sex-, and race-matched U.S. general population (purple).

Aboud, A, et al. J Am Coll Cardiol, 2021;77(11):1412-22




Mazine, A. et al. J Am Coll Cardiol. 2022;79(10):993-1005.

Comorbidités et substitut

Figure 3. Stroke at Follow-up

	Mean			Ross	AVR	IRR IV, Random	Favors	Favors	Wei
Study or Subgroup	Follow-up, y	log (IRR)	SE	Total	Total	(95% CI)	Ross Autograft	Mechanical AVR	%
Randomized clinical trial									
Doss et al, ²⁶ 2005	1.0	1.0986	1.633	20	20	3.00 (0.12-73.64)	•	1
Subtotal (95% CI)				20	20	3.00 (0.12-73.64			1
Heterogeneity: not applicable									
Test for overall effect: $z = 0.67$	(P = .50)								
Matched/adjusted observational							_		
Jaggers et al, ²⁷ 1998	1.7	0.0924	1.633	22	27	1.10 (0.04-26.92)	<u> </u>		1
Concha et al,30 2005	2.5	-1.1651	1.633	62	58	0.31 (0.01-7.66)		<u> </u>	1
Mazine et al, ³³ 2016	14.0	-1.7579	0.810	207	207	0.17 (0.04-0.84)			4
Subtotal (95% CI)				291	292	0.26 (0.07-0.95)			6
Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 1$.05, df = 2 (P = .	59); I ² = 0%	6						
Test for overall effect: z = 2.04	(P = .04)								
Unmatched/unadjusted observati	ional						_		
Andreas et al, ³² 2014	8.9	-2.4364	1.0488	156	171	0.09 (0.01-0.68)			25
Subtotal (95% CI)				156	171	0.09 (0.01-0.68)			25
Heterogeneity: not applicable									
Test for overall effect: $z = 2.32$	(P=.02)								
Total (95% CI)				467	483	0.26 (0.09-0.80)			100
Heterogeneity: $\tau^2 = 0.14$; $\chi^2 = 4$.37, df = 4 (P = .	36); I ² =8%							
Test for overall effect: $z = 2.35$	(P = .02)								
Test for subgroup differences:)	$\chi^2 = 3.32$; df = 2	$(P=.19); I^2$	=39.8%						
							0.001 0.1 IRR IV, Random	1 10 10 Effects, (95% CI)	0

At 15 years, the cumulative incidence of stroke after mechanical aortic valve replacement (red) is 4.8%, which is significantly higher than that observed after biological aortic valve replacement (blue) (3.3%) or the Ross procedure (gray) (2.1%).

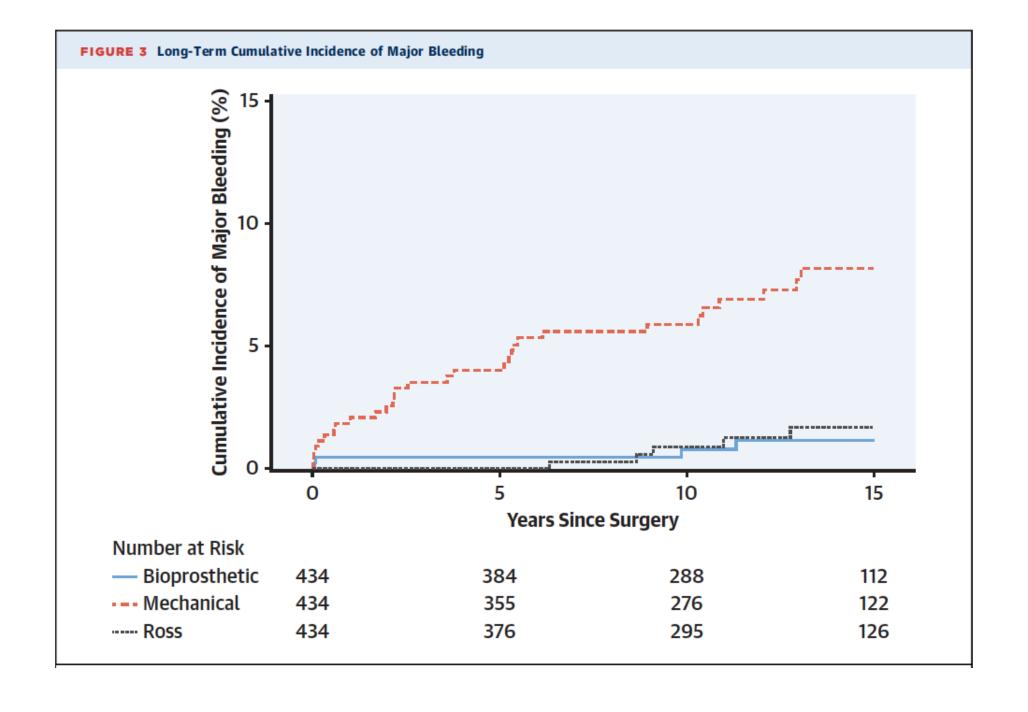
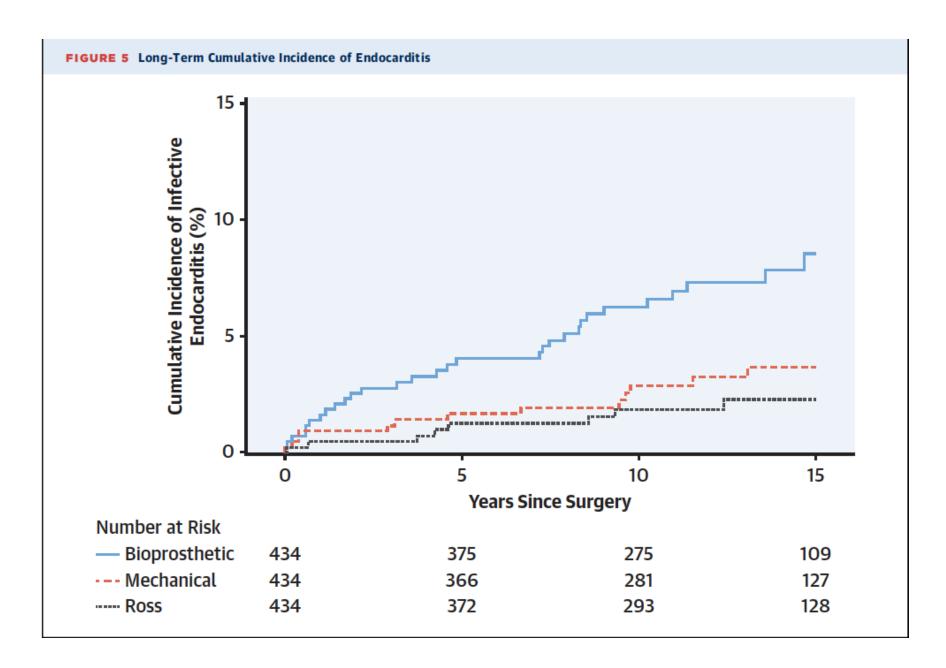
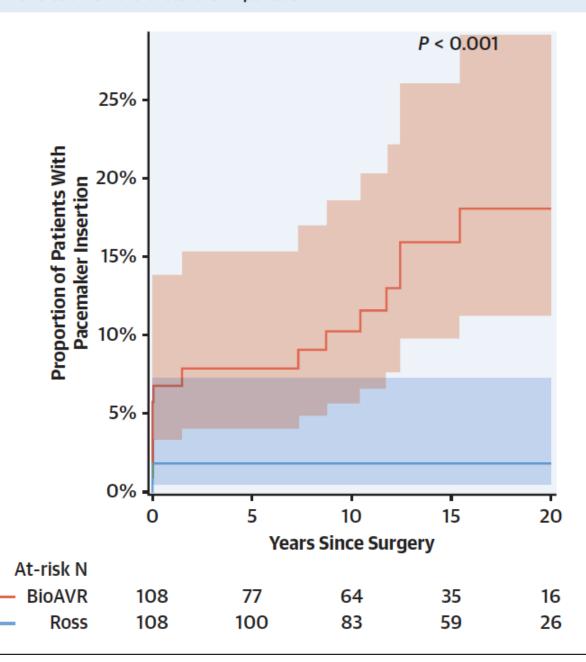
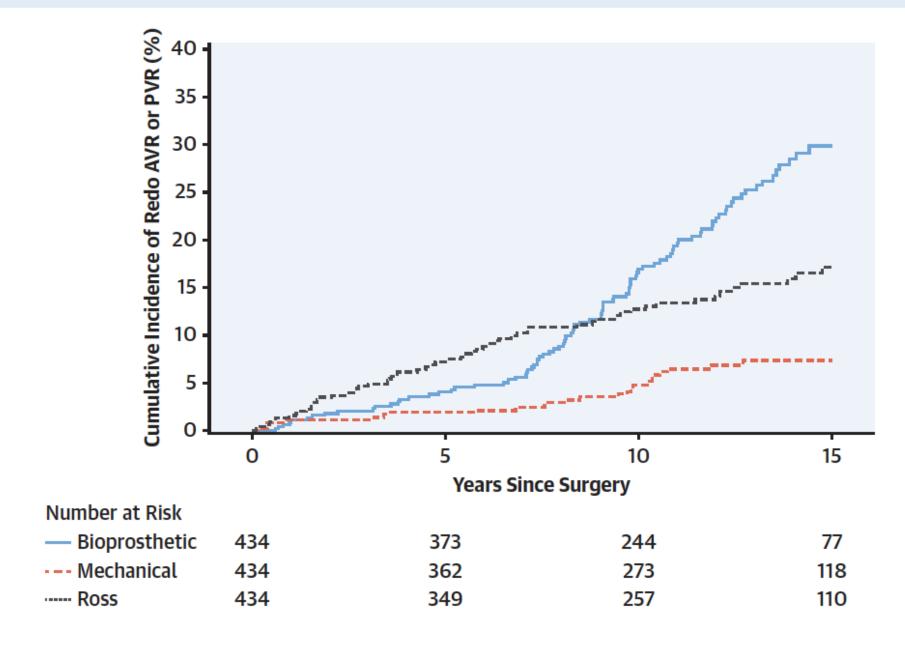
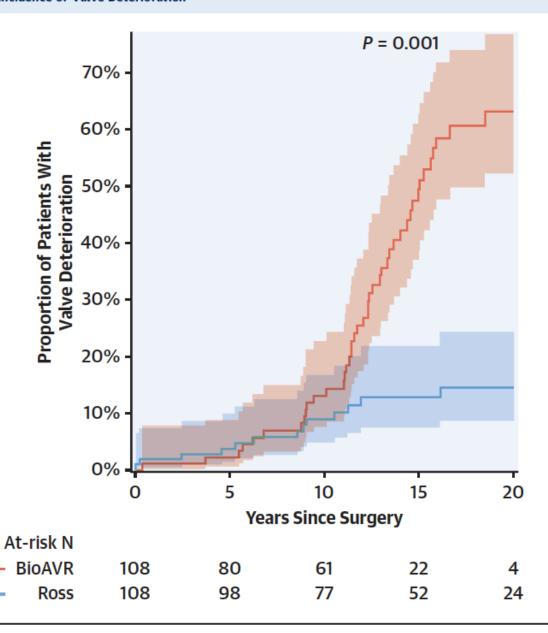
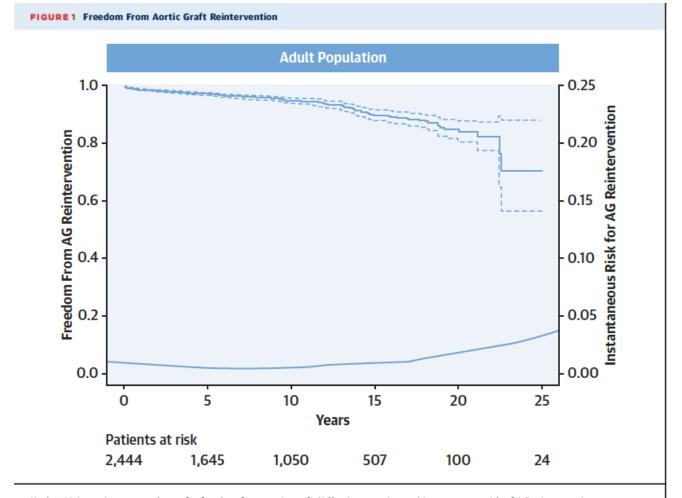




Figure 4. Major Bleeding at Follow-up

Study or Subgroup	Mean Follow-up, y	log (IRR)	SE	Ross Total	AVR Total	IRR IV, Random (95% CI)		Favors Ross Autograft	Favors Mechanical AVR	Weight, %
Randomized clinical trial										
Doss et al, ²⁶ 2005	1.0	-1.0986	1.6330	20	20	0.33 (0.01-8.18)			<u> </u>	7.5
Subtotal (95% CI)				20	20	0.33 (0.01-8.18)	-			7.5
Heterogeneity: not applical	ole									
Test for overall effect: $z=0$.67 (P=.50)									
Matched/adjusted observatio	nal									
Jaggers et al, ²⁷ 1998	1.7	0.0924	1.6330	22	27	1.10 (0.04-26.92)				7.5
Concha et al,30 2005	2.5	-2.2637	1.4907	62	58	0.10 (0.01-1.93)	←	-	<u>!</u>	9.0
Mokhles et al,31 2011	6.0	-0.8487	0.8165	253	253	0.43 (0.09-2.12)			<u>:</u>	30.1
Mazine et al, ³³ 2016	14.0	-3.7656	1.4292	207	207	0.02 (0.00-0.38)	←-			9.8
Subtotal (95% CI)				544	545	0.21 (0.05-0.93)		$\overline{}$		56.4
Heterogeneity: $\tau^2 = .75$; χ^2	= 4.36, df = 3 (P = .	23); I ² =319	6							
Test for overall effect: $z = 2$.06 (P=.04)									
Unmatched/unadjusted obser	rvational									
Klieverik et al, 37 2006	7.0	-2.3327	1.4475	79	200	0.10 (0.01-1.66)	←	-	 	9.6
Zsolt et al, 38 2008	5.4	-1.3032	1.6330	17	17	0.27 (0.01-6.67)		-	<u> </u>	7.5
Andreas et al, ³² 2014	8.9	-3.0242	1.0274	156	171	0.05 (0.01-0.36)	←	-		19.0
Subtotal (95% CI)				252	388	0.08 (0.02-0.36)	-			36.1
Heterogeneity: $\tau^2 = 0.00$; χ^2	² =0.81, df=2 (P=	.67); I ² =09	6							
Test for overall effect: $z = 3$.33 (P<.001)									
Total (95% CI)				816	953	0.17 (0.07-0.40)		$\langle \rangle$		100.0
Heterogeneity: $\tau^2 = 0.00$; χ^2	² =6.52, df=7 (P=	.48); I ² =09	6							
Test for overall effect: $z = 4$.02 (P<.001)									
Test for subgroup differenc	es: $\chi^2 = 1.01$; $df = 2$	2 (P=.60); I	2 = 0%							
							0.001	0.1	1 10	100
								IRR IV, Random	Effects, (95% CI)	

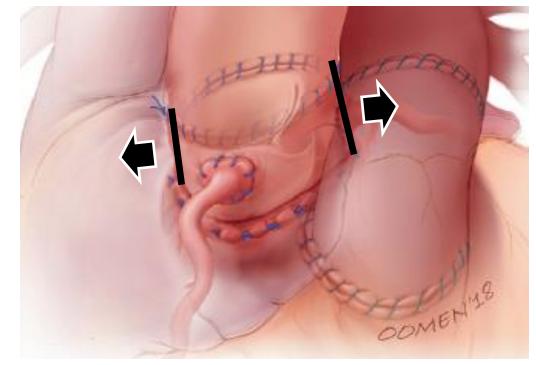



Ré-interventions


Figure 2. Any Operated Valve Reintervention

Randomized clinical trial Doss et al, 26 2005 1.0 1.6094 1.5492 20 20 5.00 (0.24-104.14) Subtotal (95% CI) 20 20 5.00 (0.24-104.14) Heterogeneity: not applicable Test for overall effect: z = 1.04 (P = .30) Matched/adjusted observational Jaggers et al, 27 1998 1.7 0.1095 1.1547 22 27 1.12 (0.12-10.73) Concha et al, 30 2005 2.5 1.3196 1.1180 62 58 3.74 (0.42-33.48) Mokhles et al, 31 2011 6.0 3.0831 1.4552 253 253 21.83 (1.26-378.13) Mazine et al, 32 2016 14.0 0.6206 0.4775 207 207 1.86 (0.73-4.74) Sharabiani et al, 34 2016 5.3 -0.0953 0.4246 224 468 0.91 (0.40-2.09) Subtotal (95% CI) 768 1013 1.70 (0.79-3.68) Heterogeneity: τ² = 0.22; χ² = 5.71, df = 4 (P = .22); l² = 30% Test for overall effect: z = 1.35 (P = .18) Unmatched/unadjusted observational Klieverik et al, 37 2006 7.0 0.9163 0.5733 79 200 2.50 (0.81-7.69) Zoolt et al, 38 2008 5.4 0.8941 1.6330 17 17 2.45 (0.10-60.02) Akhyari et al, 39 2009 3.7 1.4231 1.6330 18 20 4.15 (0.17-101.87) Andreas et al, 32 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: τ² = 0.00; χ² = .48, df = 3 (P = .92); l² = 0% Test for overall effect: z = 2.28 (P = .02)		Mean			Ross	AVR	IRR IV, Random			Favors	Favors Favors
Doss et al, 26 2005 1.0 1.6094 1.5492 20 20 5.00 (0.24-104.14) Subtotal (95% CI) 20 20 5.00 (0.24-104.14) Heterogeneity: not applicable Test for overall effect: z = 1.04 (P = .30) Matched/adjusted observational Jaggers et al, 27 1998 1.7 0.1095 1.1547 22 27 1.12 (0.12-10.73) Concha et al, 30 2005 2.5 1.3196 1.1180 62 58 3.74 (0.42-33.48) Mokhles et al, 31 2011 6.0 3.0831 1.4552 253 253 21.83 (1.26-378.13) Mazine et al, 33 2016 14.0 0.6206 0.4775 207 207 1.86 (0.73-4.74) Sharabiani et al, 34 2016 5.3 -0.0953 0.4246 224 468 0.91 (0.40-2.09) Subtotal (95% CI) 768 1013 1.70 (0.79-3.68) Heterogeneity: τ² = 0.22; χ² = 5.71, df = 4 (P = .22); l² = 30% Test for overall effect: z = 2.28 (P = .02) <t< td=""><td>Study or Subgroup</td><td>Follow-up, y</td><td>log (IRR)</td><td>SE</td><td>Total</td><td>Total</td><td>(95% CI)</td><td>_</td><td></td><td>Ross Autograft</td><td>Ross Autograft Mechanical AVR</td></t<>	Study or Subgroup	Follow-up, y	log (IRR)	SE	Total	Total	(95% CI)	_		Ross Autograft	Ross Autograft Mechanical AVR
Subtotal (95% CI) Heterogeneity: not applicable Test for overall effect: z = 1.04 (P = .30) Matched/adjusted observational Jaggers et al, ²⁷ 1998 1.7 0.1095 1.1547 22 27 1.12 (0.12-10.73) Concha et al, ³⁰ 2005 2.5 1.3196 1.1180 62 58 3.74 (0.42-33.48) Mokhles et al, ³¹ 2011 6.0 3.0831 1.4552 253 253 21.83 (1.26-378.13) Mazine et al, ³² 2016 14.0 0.6206 0.4775 207 207 1.86 (0.73-4.74) Sharabiani et al, ²⁴ 2016 5.3 -0.0953 0.4246 224 468 0.91 (0.40-2.09) Subtotal (95% CI) Test for overall effect: z = 1.35 (P = .18) Unmatched/unadjusted observational Klieverik et al, ³⁷ 2006 7.0 0.9163 0.5733 79 200 2.50 (0.81-7.69) Zsolt et al, ³⁸ 2008 5.4 0.8941 1.6330 17 17 2.45 (0.10-60.02) Akhyari et al, ³⁹ 2009 3.7 1.4231 1.6330 18 20 4.15 (0.17-101.87) Andreas et al, ³² 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) Heterogeneity: τ² = 0.00; χ² = .48, df = 3 (P = .92); l² = 0% Test for overall effect: z = 2.28 (P = .02) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: τ² = 0.00; χ² = 7.18, df = 9 (P = .62); l² = 0% Test for overall effect: z = 2.69 (P = .007) Test for subgroup differences: χ² = .50; df = 2 (P = .78); l² = 0%	Randomized clinical trial										
Heterogeneity: not applicable Test for overall effect: z = 1.04 (P = .30) Matched/adjusted observational Jaggers et al, ²⁷ 1998 1.7 0.1095 1.1547 22 27 1.12 (0.12-10.73) Concha et al, ³⁰ 2005 2.5 1.3196 1.1180 62 58 3.74 (0.42-33.48) Mokhles et al, ³¹ 2011 6.0 3.0831 1.4552 253 253 21.83 (1.26-378.13) Mazine et al, ³² 2016 14.0 0.6206 0.4775 207 207 1.86 (0.73-4.74) Sharabiani et al, ³⁴ 2016 5.3 -0.0953 0.4246 224 468 0.91 (0.40-2.09) Subtotal (95% CI) 768 1013 1.70 (0.79-3.68) Heterogeneity: τ² = 0.22; χ² = 5.71, df = 4 (P = .22); l² = 30% Test for overall effect: z = 1.35 (P = .18) Unmatched/unadjusted observational Klieverik et al, ³⁷ 2006 7.0 0.9163 0.5733 79 200 2.50 (0.81-7.69) Zsolt et al, ³⁸ 2008 5.4 0.8941 1.6330 17 17 2.45 (0.10-60.02) Akhyari et al, ³⁹ 2009 3.7 1.4231 1.6330 18 20 4.15 (0.17-101.87) Andreas et al, ³² 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: τ² = 0.00; χ² = .48, df = 3 (P = .92); l² = 0% Test for overall effect: z = 2.28 (P = .02) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: τ² = 0.00; χ² = 7.18, df = 9 (P = .62); l² = 0% Test for overall effect: z = 2.69 (P = .007) Test for subgroup differences: χ² = .50; df = 2 (P = .78); l² = 0%	Doss et al, 26 2005	1.0	1.6094	1.5492	20	20	5.00 (0.24-104.14)				
Test for overall effect: z = 1.04 (P = .30) Matched/adjusted observational Jaggers et al, ²⁷ 1998 1.7 0.1095 1.1547 22 27 1.12 (0.12-10.73) Concha et al, ³⁰ 2005 2.5 1.3196 1.1180 62 58 3.74 (0.42-33.48) Mokhles et al, ³¹ 2011 6.0 3.0831 1.4552 253 253 21.83 (1.26-378.13) Mazine et al, ³³ 2016 14.0 0.6206 0.4775 207 207 1.86 (0.73-4.74) Sharabiani et al, ³⁴ 2016 5.3 -0.0953 0.4246 224 468 0.91 (0.40-2.09) Subtotal (95% CI) 768 1013 1.70 (0.79-3.68) Heterogeneity: τ² = 0.22; χ² = 5.71, df = 4 (P = .22); l² = 30% Test for overall effect: z = 1.35 (P = .18) Unmatched/unadjusted observational Klieverik et al, ³⁷ 2006 7.0 0.9163 0.5733 79 200 2.50 (0.81-7.69) Zsolt et al, ³⁸ 2008 5.4 0.8941 1.6330 17 17 2.45 (0.10-60.02) Akhyari et al, ³⁹ 2009 3.7 1.4231 1.6330 18 20 4.15 (0.17-101.87) Andreas et al, ³² 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: τ² = 0.00; χ² = .48, df = 3 (P = .92); l² = 0% Test for overall effect: z = 2.28 (P = .02) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: τ² = 0.00; χ² = 7.18, df = 9 (P = .62); l² = 0% Test for overall effect: z = 2.69 (P = .007) Test for overall effect: z = 2.69 (P = .007) Test for subgroup differences: χ² = .50; df = 2 (P = .78); l² = 0%	Subtotal (95% CI)				20	20	5.00 (0.24-104.14)				
Matched/adjusted observational Jaggers et al, 27 1998 1.7 0.1095 1.1547 22 27 1.12 (0.12-10.73) Concha et al, 30 2005 2.5 1.3196 1.1180 62 58 3.74 (0.42-33.48) Mokhles et al, 31 2011 6.0 3.0831 1.4552 253 253 21.83 (1.26-378.13) Mazine et al, 33 2016 14.0 0.6206 0.4775 207 207 1.86 (0.73-4.74) Sharabiani et al, 34 2016 5.3 -0.0953 0.4246 224 468 0.91 (0.40-2.09) Subtotal (95% CI) 768 1013 1.70 (0.79-3.68) Heterogeneity: τ^2 = 0.22; χ^2 = 5.71, df = 4 (P = .22); I^2 = 30% Test for overall effect: z = 1.35 (P = .18) Unmatched/unadjusted observational Klieverik et al, 37 2006 7.0 0.9163 0.5733 79 200 2.50 (0.81-7.69) Zsolt et al, 38 2008 5.4 0.8941 1.6330 17 17 2.45 (0.10-60.02) Akhyari et al, 39 2009 3.7 1.4231 1.6330 18 20 4.15 (0.17-101.87) Andreas et al, 32 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: τ^2 = 0.00; χ^2 = .48, df = 3 (P = .92); I^2 = 0% Test for overall effect: z = 2.28 (P = .02) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: τ^2 = 0.00; χ^2 = 7.18, df = 9 (P = .62); I^2 = 0% Test for overall effect: z = 2.69 (P = .007) Test for subgroup differences: χ^2 = .50; df = 2 (P = .78); I^2 = 0%	Heterogeneity: not applicable										
Jaggers et al, 27 1998 1.7 0.1095 1.1547 22 27 1.12 (0.12-10.73) Concha et al, 30 2005 2.5 1.3196 1.1180 62 58 3.74 (0.42-33.48) Mokhles et al, 31 2011 6.0 3.0831 1.4552 253 253 21.83 (1.26-378.13) Mazine et al, 33 2016 14.0 0.6206 0.4775 207 207 1.86 (0.73-4.74) Sharabiani et al, 34 2016 5.3 -0.0953 0.4246 224 468 0.91 (0.40-2.09) Subtotal (95% CI) 768 1013 1.70 (0.79-3.68) Heterogeneity: τ^2 = 0.22; χ^2 = 5.71, df = 4 (P = .22); I^2 = 30% Test for overall effect: z = 1.35 (P = .18) Unmatched/unadjusted observational Klieverik et al, 37 2006 7.0 0.9163 0.5733 79 200 2.50 (0.81-7.69) Zsolt et al, 38 2008 5.4 0.8941 1.6330 17 17 2.45 (0.10-60.02) Akhyari et al, 39 2009 3.7 1.4231 1.6330 18 20 4.15 (0.17-101.87) Andreas et al, 32 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: τ^2 = 0.00; χ^2 = .48, df = 3 (P = .92); I^2 = 0% Test for overall effect: z = 2.28 (P = .02) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: τ^2 = 0.00; χ^2 = 7.18, df = 9 (P = .62); I^2 = 0% Test for overall effect: z = 2.69 (P = .007) Test for subgroup differences: χ^2 = .50; df = 2 (P = .78); I^2 = 0%	Test for overall effect: z = 1.04	1 (P=.30)									
Concha et al, 30 2005 2.5 1.3196 1.1180 62 58 3.74 (0.42-33.48) Mokhles et al, 31 2011 6.0 3.0831 1.4552 253 253 21.83 (1.26-378.13) Mazine et al, 33 2016 14.0 0.6206 0.4775 207 207 1.86 (0.73-4.74) Sharabiani et al, 34 2016 5.3 -0.0953 0.4246 224 468 0.91 (0.40-2.09) Subtotal (95% CI) 768 1013 1.70 (0.79-3.68) Heterogeneity: τ^2 = 0.22; χ^2 = 5.71, df = 4 (P = .22); I^2 = 30% Test for overall effect: z = 1.35 (P = .18) Unmatched/unadjusted observational Klieverik et al, 37 2006 7.0 0.9163 0.5733 79 200 2.50 (0.81-7.69) Zsolt et al, 38 2008 5.4 0.8941 1.6330 17 17 2.45 (0.10-60.02) Akhyari et al, 39 2009 3.7 1.4231 1.6330 18 20 4.15 (0.17-101.87) Andreas et al, 32 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: τ^2 = 0.00; χ^2 = .48, df = 3 (P = .92); I^2 = 0% Test for overall effect: z = 2.28 (P = .02) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: τ^2 = 0.00; χ^2 = 7.18, df = 9 (P = .62); I^2 = 0% Test for overall effect: z = 2.69 (P = .007) Test for subgroup differences: χ^2 = .50; df = 2 (P = .78); I^2 = 0%	Matched/adjusted observationa	l									
Mokhles et al, 31 2011 6.0 3.0831 1.4552 253 253 21.83 (1.26-378.13) Mazine et al, 33 2016 14.0 0.6206 0.4775 207 207 1.86 (0.73-4.74) Sharabiani et al, 34 2016 5.3 -0.0953 0.4246 224 468 0.91 (0.40-2.09) Subtotal (95% CI) 768 1013 1.70 (0.79-3.68) Heterogeneity: τ^2 = 0.22; χ^2 = 5.71, df = 4 (P = .22); I^2 = 30% Test for overall effect: z = 1.35 (P = .18) Unmatched/unadjusted observational Klieverik et al, 37 2006 7.0 0.9163 0.5733 79 200 2.50 (0.81-7.69) Zsolt et al, 38 2008 5.4 0.8941 1.6330 17 17 2.45 (0.10-60.02) Akhyari et al, 39 2009 3.7 1.4231 1.6330 18 20 4.15 (0.17-101.87) Andreas et al, 32 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: τ^2 = 0.00; χ^2 = .48, df = 3 (P = .92); I^2 = 0% Test for overall effect: z = 2.28 (P = .02) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: τ^2 = 0.00; χ^2 = 7.18, df = 9 (P = .62); I^2 = 0% Test for overall effect: z = 2.69 (P = .007) Test for subgroup differences: χ^2 = .50; df = 2 (P = .78); I^2 = 0%	Jaggers et al, ²⁷ 1998	1.7	0.1095	1.1547	22	27	1.12 (0.12-10.73)				<u> </u>
Mazine et al, 33 2016 14.0 0.6206 0.4775 207 207 1.86 (0.73-4.74) Sharabiani et al, 34 2016 5.3 -0.0953 0.4246 224 468 0.91 (0.40-2.09) Subtotal (95% CI) 768 1013 1.70 (0.79-3.68) Heterogeneity: τ^2 = 0.22; χ^2 = 5.71, df = 4 (P = .22); I^2 = 30% Test for overall effect: z = 1.35 (P = .18) Unmatched/unadjusted observational Klieverik et al, 37 2006 7.0 0.9163 0.5733 79 200 2.50 (0.81-7.69) Zsolt et al, 38 2008 5.4 0.8941 1.6330 17 17 2.45 (0.10-60.02) Akhyari et al, 39 2009 3.7 1.4231 1.6330 18 20 4.15 (0.17-101.87) Andreas et al, 32 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: τ^2 = 0.00; χ^2 = .48, df = 3 (P = .92); I^2 = 0% Test for overall effect: z = 2.28 (P = .02) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: τ^2 = 0.00; χ^2 = 7.18, df = 9 (P = .62); I^2 = 0% Test for overall effect: z = 2.69 (P = .007) Test for subgroup differences: χ^2 = .50; df = 2 (P = .78); I^2 = 0%	Concha et al, ³⁰ 2005	2.5	1.3196	1.1180	62	58	3.74 (0.42-33.48)				
Sharabiani et al, 34 2016 5.3 -0.0953 0.4246 224 468 0.91 (0.40-2.09) Subtotal (95% CI) 768 1013 1.70 (0.79-3.68) Heterogeneity: τ^2 = 0.22; χ^2 = 5.71, df = 4 (P = .22); I^2 = 30% Test for overall effect: z = 1.35 (P = .18) Unmatched/unadjusted observational Klieverik et al, 37 2006 7.0 0.9163 0.5733 79 200 2.50 (0.81-7.69) Zsolt et al, 38 2008 5.4 0.8941 1.6330 17 17 2.45 (0.10-60.02) Akhyari et al, 39 2009 3.7 1.4231 1.6330 18 20 4.15 (0.17-101.87) Andreas et al, 32 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: τ^2 = 0.00; χ^2 = .48, df = 3 (P = .92); I^2 = 0% Test for overall effect: z = 2.28 (P = .02) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: τ^2 = 0.00; χ^2 = 7.18, df = 9 (P = .62); I^2 = 0% Test for subgroup differences: χ^2 = .50; df = 2 (P = .78); I^2 = 0%	Mokhles et al,31 2011	6.0	3.0831	1.4552	253	253	21.83 (1.26-378.13)				
Subtotal (95% CI) 768 1013 1.70 (0.79-3.68) Heterogeneity: τ^2 = 0.22; χ^2 = 5.71, df = 4 (P = .22); I^2 = 30% Test for overall effect: z = 1.35 (P = .18) Unmatched/unadjusted observational Klieverik et al, 37 2006 7.0 0.9163 0.5733 79 200 2.50 (0.81-7.69) Zsolt et al, 38 2008 5.4 0.8941 1.6330 17 17 2.45 (0.10-60.02) Akhyari et al, 39 2009 3.7 1.4231 1.6330 18 20 4.15 (0.17-101.87) Andreas et al, 32 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: τ^2 = 0.00; χ^2 = .48, df = 3 (P = .92); I^2 = 0% Test for overall effect: z = 2.28 (P = .02) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: τ^2 = 0.00; χ^2 = 7.18, df = 9 (P = .62); I^2 = 0% Test for overall effect: z = 2.69 (P = .007) Test for subgroup differences: χ^2 = .50; df = 2 (P = .78); I^2 = 0%	Mazine et al,33 2016	14.0	0.6206	0.4775	207	207	1.86 (0.73-4.74)			_	
Heterogeneity: τ^2 = 0.22; χ^2 = 5.71, df = 4 (P = .22); I^2 = 30% Test for overall effect: z = 1.35 (P = .18) Unmatched/unadjusted observational Klieverik et al, 37 2006 7.0 0.9163 0.5733 79 200 2.50 (0.81-7.69) Zsolt et al, 38 2008 5.4 0.8941 1.6330 17 17 2.45 (0.10-60.02) Akhyari et al, 39 2009 3.7 1.4231 1.6330 18 20 4.15 (0.17-101.87) Andreas et al, 32 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: τ^2 = 0.00; χ^2 = .48, df = 3 (P = .92); I^2 = 0% Test for overall effect: z = 2.28 (P = .02) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: τ^2 = 0.00; χ^2 = 7.18, df = 9 (P = .62); I^2 = 0% Test for subgroup differences: χ^2 = .50; df = 2 (P = .78); I^2 = 0%	Sharabiani et al, 34 2016	5.3	-0.0953	0.4246	224	468	0.91 (0.40-2.09)				
Test for overall effect: $z=1.35$ ($P=.18$) Unmatched/unadjusted observational Klieverik et al, 37 2006 7.0 0.9163 0.5733 79 200 2.50 (0.81-7.69) Zsolt et al, 38 2008 5.4 0.8941 1.6330 17 17 2.45 (0.10-60.02) Akhyari et al, 39 2009 3.7 1.4231 1.6330 18 20 4.15 (0.17-101.87) Andreas et al, 32 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = .48$, $df = 3$ ($P = .92$); $I^2 = 0$ % Test for overall effect: $z = 2.28$ ($P = .02$) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: $\tau^2 = 0.00$; $\tau^2 = 7.18$, $\tau^2 = 0.00$; $\tau^2 = 0.0$	Subtotal (95% CI)				768	1013	1.70 (0.79-3.68)			<	
Unmatched/unadjusted observational Klieverik et al, 37 2006 7.0 0.9163 0.5733 79 200 2.50 (0.81-7.69) Zsolt et al, 38 2008 5.4 0.8941 1.6330 17 17 2.45 (0.10-60.02) Akhyari et al, 39 2009 3.7 1.4231 1.6330 18 20 4.15 (0.17-101.87) Andreas et al, 32 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: τ^2 = 0.00; χ^2 = .48, df = 3 (P = .92); I^2 = 0% Test for overall effect: z = 2.28 (P = .02) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: τ^2 = 0.00; χ^2 = 7.18, df = 9 (P = .62); I^2 = 0% Test for overall effect: z = 2.69 (P = .007) Test for subgroup differences: χ^2 = .50; df = 2 (P = .78); I^2 = 0%	Heterogeneity: $\tau^2 = 0.22$; $\chi^2 =$	5.71, df = 4 (P	=.22); I ² =	30%							
Klieverik et al, 37 2006 7.0 0.9163 0.5733 79 200 2.50 (0.81-7.69) Zsolt et al, 38 2008 5.4 0.8941 1.6330 17 17 2.45 (0.10-60.02) Akhyari et al, 39 2009 3.7 1.4231 1.6330 18 20 4.15 (0.17-101.87) Andreas et al, 32 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: τ^2 = 0.00; χ^2 = .48, df = 3 (P = .92); I^2 = 0% Test for overall effect: z = 2.28 (P = .02) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: τ^2 = 0.00; χ^2 = 7.18, df = 9 (P = .62); I^2 = 0% Test for subgroup differences: χ^2 = .50; df = 2 (P = .78); I^2 = 0%	Test for overall effect: z = 1.3	(P=.18)									
Zsolt et al, 38 2008 5.4 0.8941 1.6330 17 17 2.45 (0.10-60.02) Akhyari et al, 39 2009 3.7 1.4231 1.6330 18 20 4.15 (0.17-101.87) Andreas et al, 32 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = .48$, $df = 3$ ($P = .92$); $I^2 = 0\%$ Test for overall effect: $z = 2.28$ ($P = .02$) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 7.18$, $df = 9$ ($P = .62$); $I^2 = 0\%$ Test for overall effect: $z = 2.69$ ($P = .007$) Test for subgroup differences: $\chi^2 = .50$; $df = 2$ ($P = .78$); $I^2 = 0\%$	Unmatched/unadjusted observa	tional									
Akhyari et al, 39 2009 3.7 1.4231 1.6330 18 20 4.15 (0.17-101.87) Andreas et al, 32 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: τ^2 = 0.00; χ^2 = .48, df = 3 (P = .92); I^2 = 0% Test for overall effect: z = 2.28 (P = .02) 1058 1441 1.76 (1.16-2.65) Heterogeneity: τ^2 = 0.00; χ^2 = 7.18, df = 9 (P = .62); I^2 = 0% Test for overall effect: z = 2.69 (P = .007) Test for subgroup differences: χ^2 = .50; df = 2 (P = .78); I^2 = 0%	Klieverik et al, ³⁷ 2006	7.0	0.9163	0.5733	79	200	2.50 (0.81-7.69)			-	<u> </u>
Andreas et al, 32 2014 8.9 0.5592 0.3873 156 171 1.75 (0.82-3.74) Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: τ^2 = 0.00; χ^2 = .48, df = 3 (P = .92); I^2 = 0% Test for overall effect: z = 2.28 (P = .02) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: τ^2 = 0.00; χ^2 = 7.18, df = 9 (P = .62); I^2 = 0% Test for overall effect: z = 2.69 (P = .007) Test for subgroup differences: χ^2 = .50; df = 2 (P = .78); I^2 = 0%	Zsolt et al,38 2008	5.4	0.8941	1.6330	17	17	2.45 (0.10-60.02)				
Subtotal (95% CI) 270 408 2.03 (1.11-3.71) Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = .48$, $df = 3$ ($P = .92$); $I^2 = 0\%$ Test for overall effect: $z = 2.28$ ($P = .02$) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 7.18$, $df = 9$ ($P = .62$); $I^2 = 0\%$ Test for overall effect: $z = 2.69$ ($P = .007$) Test for subgroup differences: $\chi^2 = .50$; $df = 2$ ($P = .78$); $I^2 = 0\%$	Akhyari et al, ³⁹ 2009	3.7	1.4231	1.6330	18	20	4.15 (0.17-101.87)				
Heterogeneity: τ^2 = 0.00; χ^2 = .48, df = 3 (P = .92); I^2 = 0% Test for overall effect: z = 2.28 (P = .02) Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: τ^2 = 0.00; χ^2 = 7.18, df = 9 (P = .62); I^2 = 0% Test for overall effect: z = 2.69 (P = .007) Test for subgroup differences: χ^2 = .50; df = 2 (P = .78); I^2 = 0%	Andreas et al, ³² 2014	8.9	0.5592	0.3873	156	171	1.75 (0.82-3.74)			-	-
Test for overall effect: $z=2.28$ ($P=.02$) Total (95% CI) Heterogeneity: $\tau^2=0.00$; $\chi^2=7.18$, $df=9$ ($P=.62$); $I^2=0\%$ Test for overall effect: $z=2.69$ ($P=.007$) Test for subgroup differences: $\chi^2=.50$; $df=2$ ($P=.78$); $I^2=0\%$	Subtotal (95% CI)				270	408	2.03 (1.11-3.71)				
Total (95% CI) 1058 1441 1.76 (1.16-2.65) Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 7.18$, $df = 9$ ($P = .62$); $I^2 = 0\%$ Test for overall effect: $z = 2.69$ ($P = .007$) Test for subgroup differences: $\chi^2 = .50$; $df = 2$ ($P = .78$); $I^2 = 0\%$	Heterogeneity: $\tau^2 = 0.00$; $\chi^2 =$.48, df = 3 (P =	.92); I ² =0	%							
Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 7.18$, $df = 9$ ($P = .62$); $I^2 = 0\%$ Test for overall effect: $z = 2.69$ ($P = .007$) Test for subgroup differences: $\chi^2 = .50$; $df = 2$ ($P = .78$); $I^2 = 0\%$	Test for overall effect: z = 2.28	3 (P=.02)									
Test for overall effect: $z = 2.69$ ($P = .007$) Test for subgroup differences: $\chi^2 = .50$; $df = 2$ ($P = .78$); $I^2 = 0\%$	Total (95% CI)				1058	1441	1.76 (1.16-2.65)				\Diamond
Test for subgroup differences: $\chi^2 = .50$; $df = 2$ ($P = .78$); $I^2 = 0\%$	Heterogeneity: $\tau^2 = 0.00$; $\chi^2 =$	7.18, df = 9 (P	=.62); I ² =	0%							
	Test for overall effect: z = 2.69	P=.007)									
O	Test for subgroup differences	$\chi^2 = .50$; df = 2	2 (P=.78);	$I^2 = 0\%$							
								0	0.001	0.001 0.1	0.001 0.1 1 10
										IRR IV, Random	IRR IV, Random Effects, (95% CI)

FIGURE 4 Long-Term Cumulative Incidence of Any Aortic and/or Pulmonary Reoperation



Expérience Lilloise

PROBLEMATIQUE

Freestanding root replacement

Talon d'Achille:

dilatation de l'autogreffe *libre* ≈ 50% à 10 ans

1ère cause de réintervention

IAo préopératoire, anneau aortique dilaté, sexe 🗸

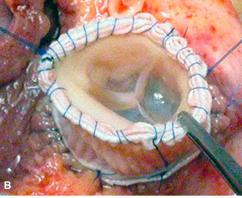
Simon-Kupilik et al., Eur J Cardiothorac Surg. 2002 Frigiola et al., Ann Thorac Surg. 2008 Klieverik et al., Eur Heart J. 2007

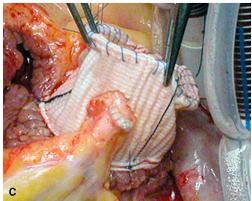
David et al., J Thorac Cardiovas Surg. 2014

PROBLEMATIQUE

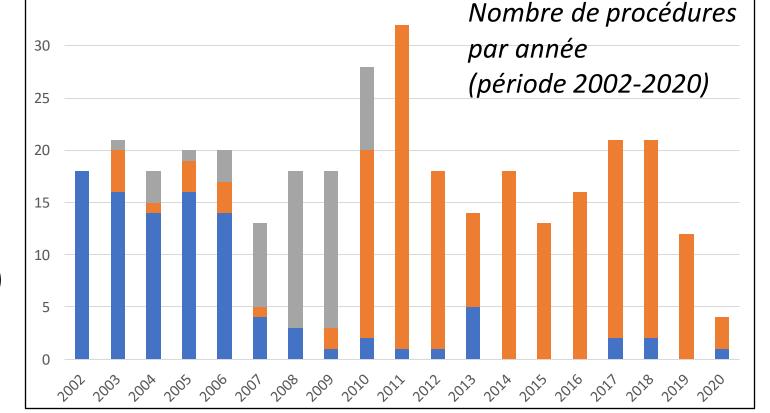
Renforcement de l'autogreffe \rightarrow inclusion prothétique Valsalva

Modified Ross operation with reinforcement of the pulmonary autograft: Six-year results


Francis Juthier, MD, PhD, a,c Carlo Banfi, MD, PhD, FCCP, André Vincentelli, MD, PhD, Pierre-Vladimir Ennezat, MD, PhD, Thierry Le Tourneau, MD, PhD, Claire Pinçon, PhD, and Alain Prat, MD, Claire Pinçon, PhD, and Alain Prat, MD, Claire Pinçon, PhD, Claire Pincon, P


Juthier et al., J Thorac Cardiovas Surg. 2010

Résultats à long terme ?

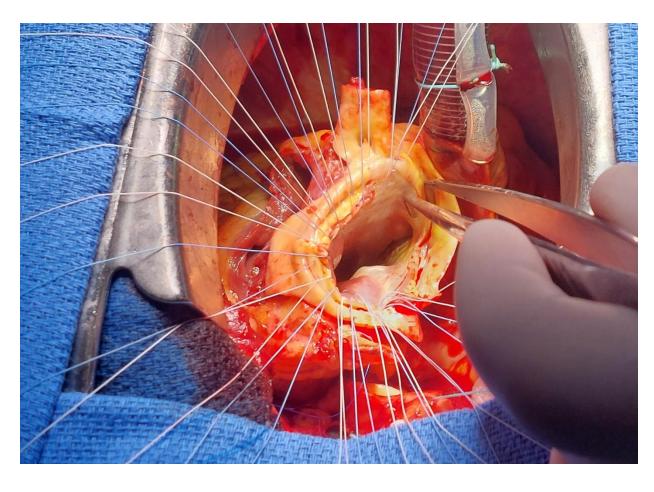


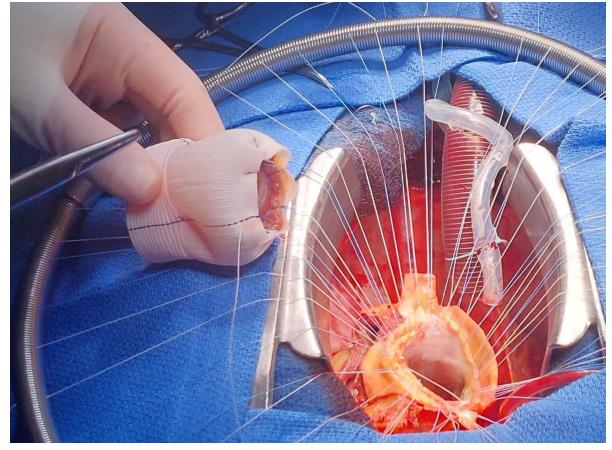
MATERIELS ET METHODES - cohorte

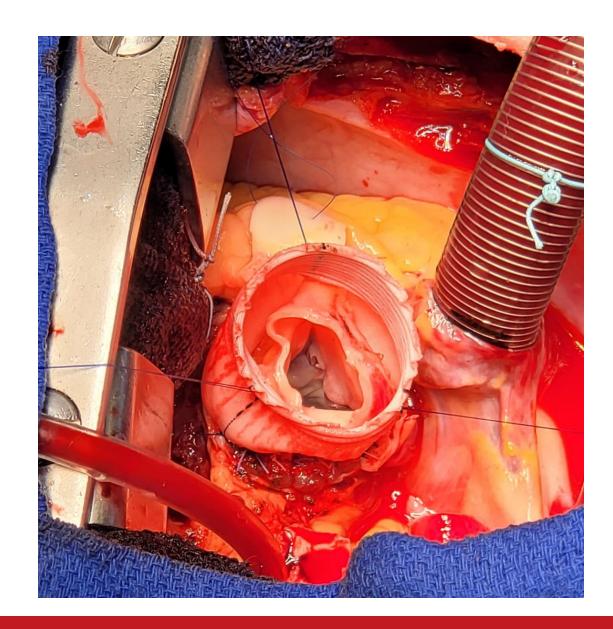
Cohorte lilloise, mars 1992 – décembre 2020 : **525 Ross**

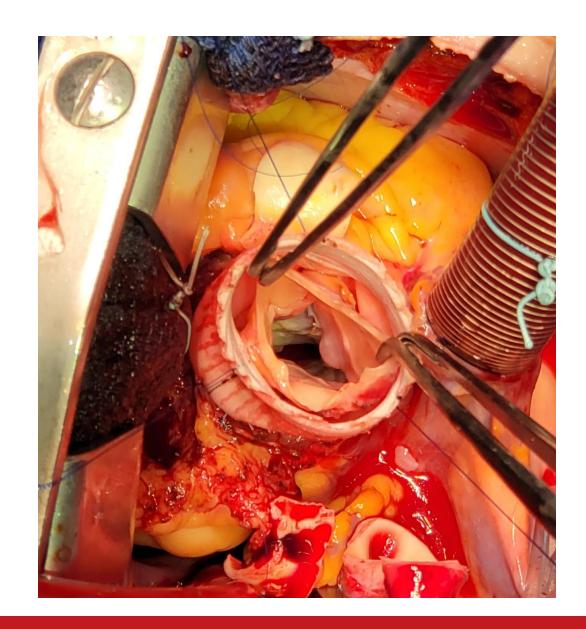
<u>Technique</u>:

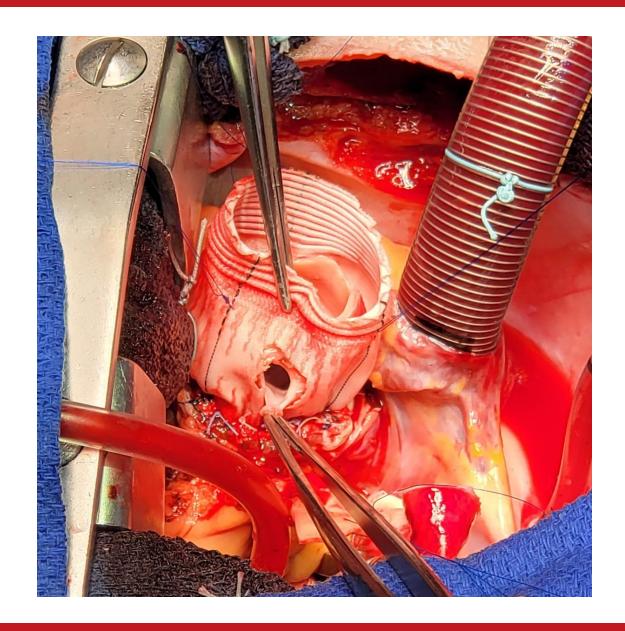
- → Full-root (1992-2020) n = **282** (53,7%)
- → Sous-coronaire (2003-2010)
 n = 54 (10,3%)
- → Inclusion Valsalva (2003-2020)

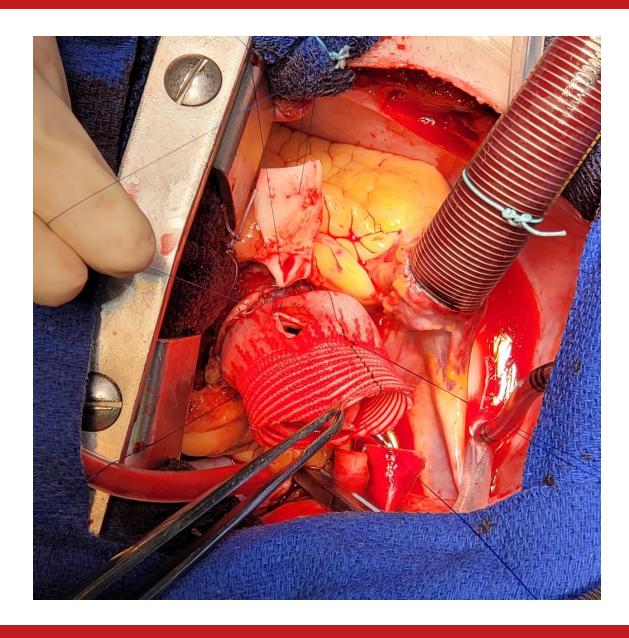



Cohorte rétrospective, n = 189


Tous inclus pour analyse CNIL MR-004 (n°2234506), CERC SFCTCV (IRB00012919)







RESULTATS – préopératoire

n = 189

	Variable	Values				
Age,	у					
	Median	30.9	(22.5-38.7)			
	Range	11-52				
	Pediatric	20	(10.6)			
Male	esex	140	(74.1)			
Prev	ious intervententions					
	Previous sternotomy	22	(11.6)			
	Previous aortic valve repair	13	(6.9)			
	Previous balloon dilatation	12	(6.3)			
Aorti	c valve morphology					
	Bicuspid	171	(90.5)			
	Non-bicuspid	13	(6.9)			
	Prosthesis	5	(2.6)			
Etiol	ogy					
	Acute Endocarditis	6	(3.2)			
Hem	odynamic lesion					
	Pure aortic insufficiency	76	(40.2)			
	Pure aortic stenosis	58	(30.7)			
	Mixed lesion	50	(26.5)			
	Prosthetic valve failure	5	(2.6)			
Dilat	ed ascending aorta	100	(52.9)			
	Values are median (IQR) or n (%)					

RESULTATS – per-opératoire

n = 189

Variable	Va	lues
Cardiopulmonary bypass duration, min	135	(120-171.5)
Cross-clamp duration, min	114	(101.5-143.5)
Diameters, mm		
Native aortic annulus	27	(24.3-29)
Autograft	26	(24-26)
Valsalva graft	28	(26-30)
RVOT reconstruction		
Cryopreserved homograft	142	(75.1)
Freestyle	41	(21.7)
Other	6	(3.2)
Concomitant procedures (n=102, 54.0%)		
On ascending aorta	93	(49.2)
Other	30	(15.9)
Aortic annulus enlargement	4	(2.1)
Atrial septal defect repair	4	(2.1)
Ventricular septal defect repair	3	(1.6)
Congenital anomalous coronary artery repair	2	(1.1)
≥ 2 concomitant procedures	7	(3.7)
Intraoperative complications		
Aortic reclamping	8	(4.2)
Unplanned coronary artery bypass grafting	3	(1.6)
Values are median (IQR) or n (%)		

RESULTATS – post-opératoire précoce

n = 189

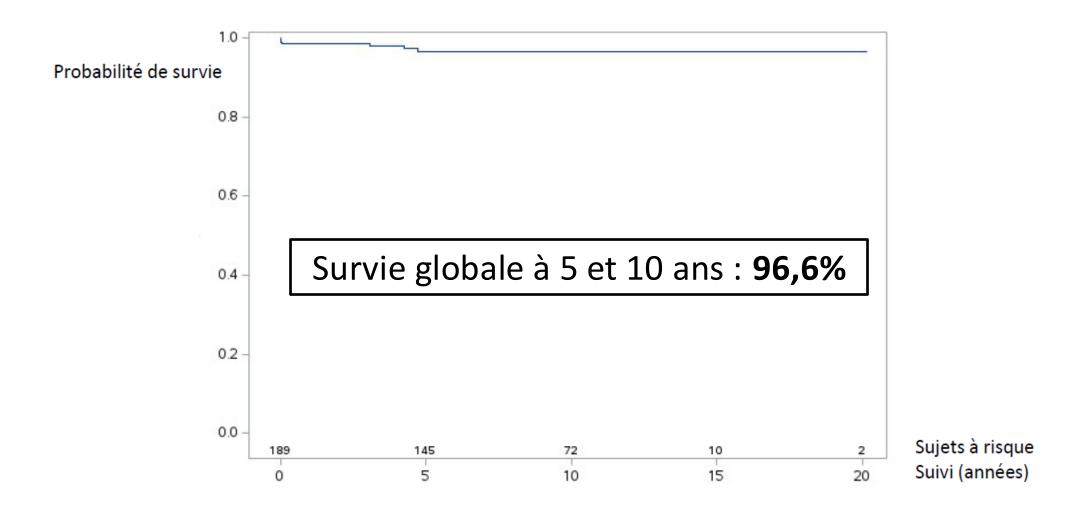
Variable	Values
Mortality	3 (1.6)
Veinoarterial ECMO	4 (2.1)
Reexploration	7 (3.7)
For bleeding	3 (1.6)
For autograft explantation	1 (0.5)
Other cause	3 (1.6)
Pacemaker implantation	4 (2.1)
Stroke	2 (1.1)
Values are median (IQR) or n (%)	
	2 (1.1)

Décès précoces : 3 (1,6%)

P 63 ♀ 41 ans, tridux, Ross-Konno
2 reclampages pour hémostase
Décès J3

P 69 ♂ 30 ans, tridux
2 reclampages, pontage Cx, ECMO
Décès J5

P 172 ♀ 39 ans, obèse
2 reclampages, pontages IVA-CD, ECMO


1 explantation précoce

Décès J10

P 73 Faux-anévrisme proximal septique Bentall mécanique à J26

RESULTATS – survie

Suivi clinique médian 8,6 ans

RESULTATS — réinterventions tardives

Réinterventions tardives majeures : 13 patients, 15 procédures

Non valvulaires : 2 procédures

- Invagination auricule gauche
- Plastie mitrale pour IM

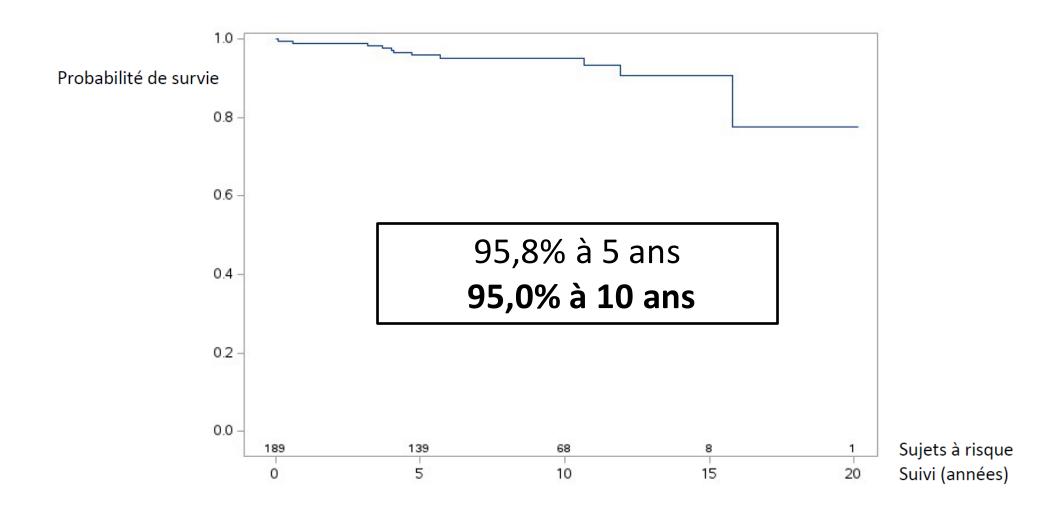
Sur la voie droite : 3 procédures

- 2 percutanées
- 1 chir concomitante

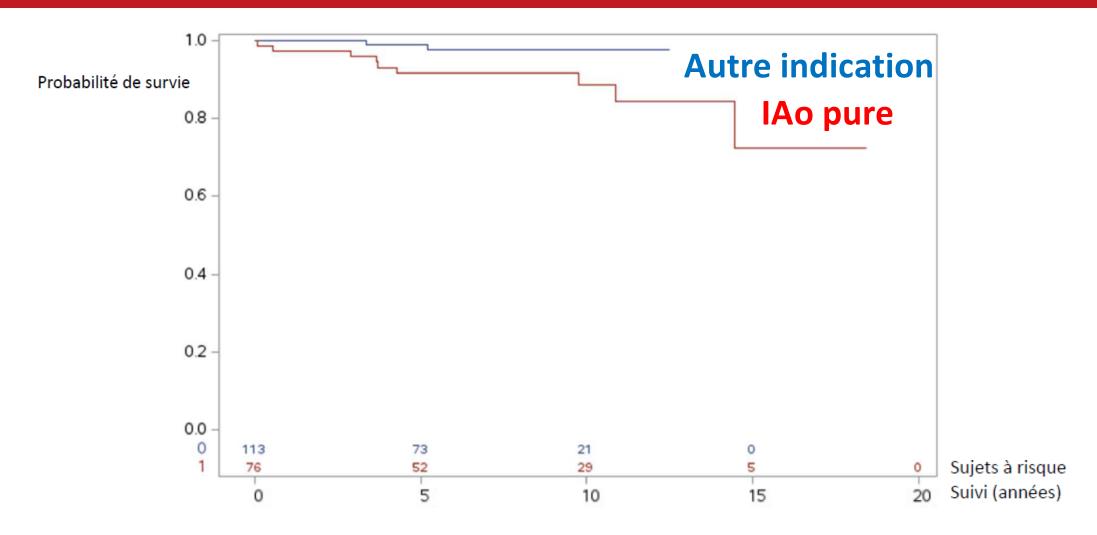
Valvulaires: 12 patients, 13 procédures

Sur l'autogreffe :

10 patients, 11 procédures



Pour IAo sévère


- → faux-anévrisme proximal aseptique (1 patient)
- → <u>prolapsus de cuspide</u> (9 patients, 10 procédures)
 3 tentatives de plastie

In fine explantation (délai médian 5 ans)

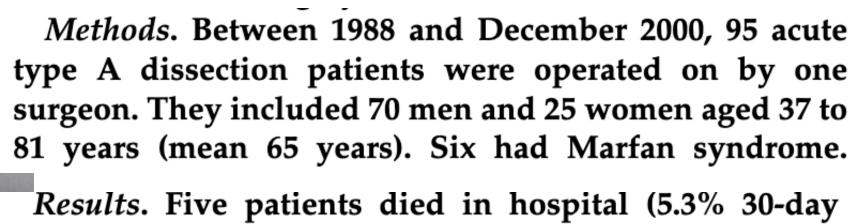
RESULTATS – survie sans réintervention

RESULTATS - FDR de réintervention sur l'autogreffe

- → Anneau aortique dilaté (HR 1,2/mm, p<0,05)
- → IAo préopératoire (HR 4,9, p<0,05)

CONCLUSION

Cohorte rétrospective monocentrique (n = 189, suivi médian 8,6 ans)


Technique sûre et reproductible

5% de réinterv sur autogreffe à 10 ans

IAo préop et anneau ao dilaté

Poursuite du suivi dans la 2ème décennie

Chirurgie des syndromes aortiques aigus

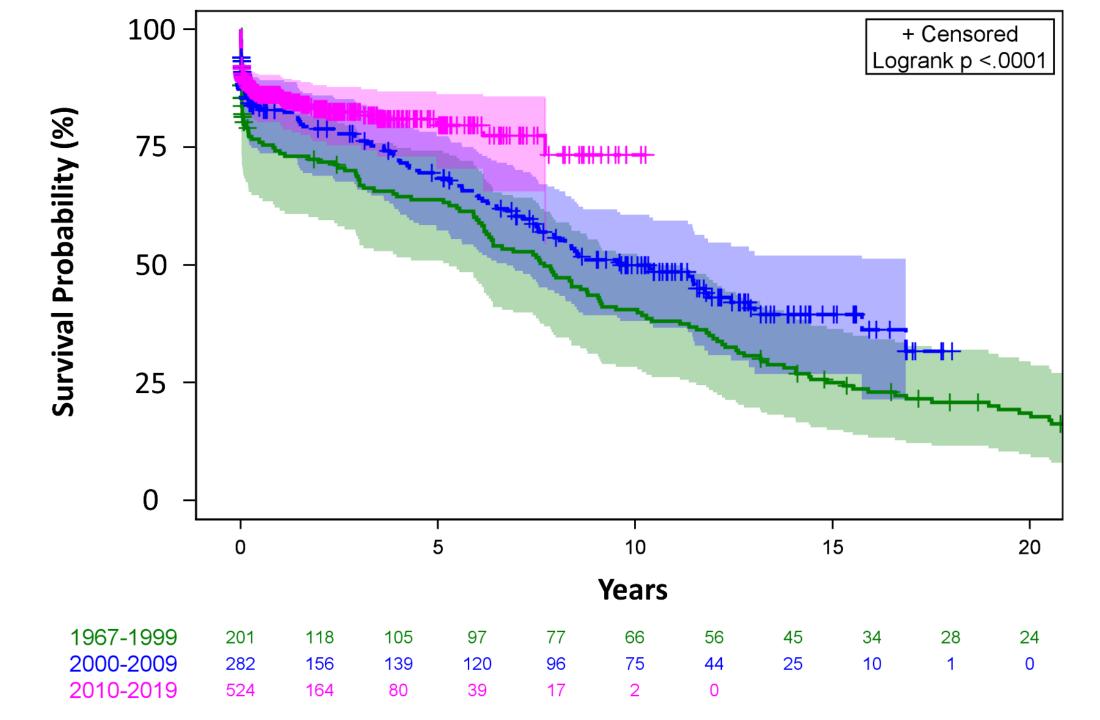
Results. Five patients died in hospital (5.3% 30-day mortality) and another after early readmission for mediastinal infection (6.3% total mortality). There were no deaths from bleeding. Two patients required aortic valve replacement for aortic regurgitation 2.5 and 3.0 years postoperatively. Two others required total arch replacement and thromboexclusion procedures, respectively.

tients had ascending aortic replacement with glue resuspension of the valve. Two others had had aortic valve replacement previously. Aortic root and partial arch replacement was performed in 6 Marfan patients. Eighvative "pathology-oriented" approach helps to achieve this aim.

(Ann Thorac Surg 2002;73:707–13) © 2002 by The Society of Thoracic Surgeons 26

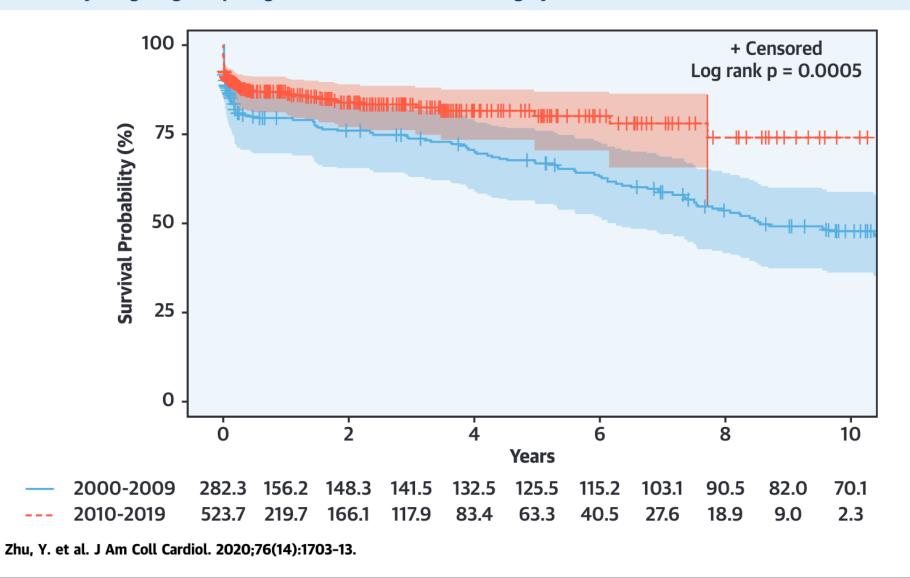
PUBLISHED BY ELSEVIER

JACC HISTORICAL BREAKTHROUGHS IN PERSPECTIVE


Type A Aortic Dissection— Experience Over 5 Decades

JACC Historical Breakthroughs in Perspective

Yuanjia Zhu, MD,^a Bharathi Lingala, PhD,^a Michael Baiocchi, PhD,^b Jacqueline J. Tao, BS,^c Veronica Toro Arana, BS,^c Jason W. Khoo, BA,^c Kiah M. Williams, BA,^c Abd Al-Rahman Traboulsi, BS,^c Hilary C. Hammond, MMS, PA-C,^a Anson M. Lee, MD,^a William Hiesinger, MD,^a Jack Boyd, MD,^a Philip E. Oyer, MD, PhD,^a Edward B. Stinson, MD,^a Bruce A. Reitz, MD,^a R. Scott Mitchell, MD,^a D. Craig Miller, MD,^a Michael P. Fischbein, MD, PhD,^a Y. Joseph Woo, MD^a


Mortalité opératoire

- Early area:
 - 1967-1992: 26%

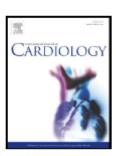
- Middle area:
 - 2000-2009: 12.6%

- Modern area
 - 2010-2019 : 9.4%

CENTRAL ILLUSTRATION Kaplan-Meier Survival Analyses After the Application of Stabilized Inverse Probability Weighting Comparing Patients Who Underwent Surgery in 2000 to 2009 Versus 2010 to 2019

Patients who underwent acute type A aortic dissection (ATAAD) repair in 2010 to 2019 demonstrated superior survival compared with those who underwent ATAAD repair in 2000 to 2009 (p = 0.0005). **Shaded area** = 95% confidence interval.

En 2023, quelle stratégie?

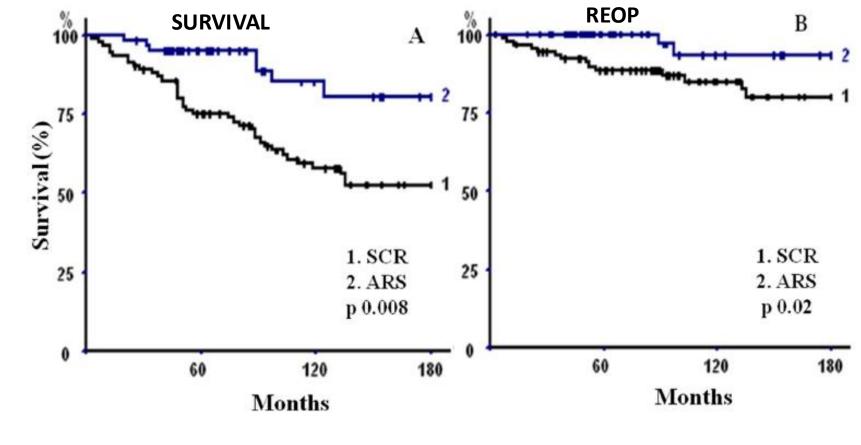

Aorte Proximale

Contents lists available at ScienceDirect

International Journal of Cardiology

journal homepage: www.elsevier.com/locate/ijcard

Aortic root surgery improves long-term survival after acute type A aortic dissection


Ilir Hysi ^a, Francis Juthier ^a, Olivier Fabre ^b, Olivier Fouquet ^c, Natacha Rousse ^a, Carlo Banfi ^a, Claire Pinçon ^d, Alain Prat ^a, André Vincentelli ^{a,*}

^a Centre Hospitalier Régional et Universitaire de Lille, Lille 59035, Department of Cardiovascular Surgery, France

^b Centre Hospitalier de Lens et Hôpital privé de Bois Bernard, Lens, Department of Cardiac surgery, France

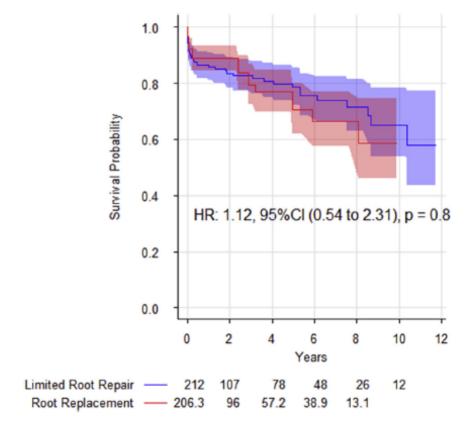
^c Centre Hospitalier Universitaire d'Angers, Angers 42000, Department of Cardiovascular and Thoracic surgery, France

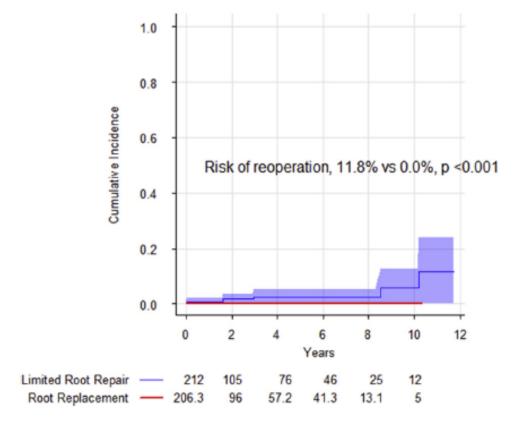
^d Université Lille Nord de France, Lille 59000, UDSL, EA2694, Department of Biostatistics, France

Patients at risk

SCR	68	39	23	67	39	23
ARS	42	18	13	42	21	14

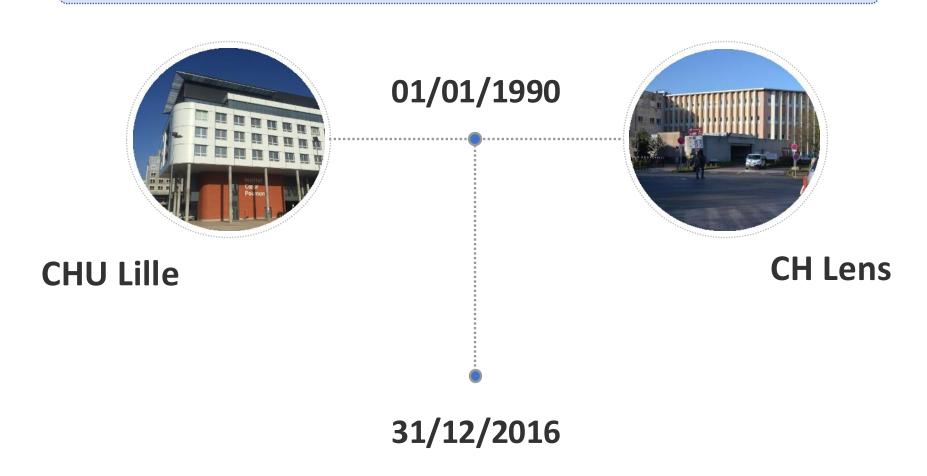
Multivariate Cox analysis of factors affecting event-free survival.


Multivariate analysis							
Variable	OR	CI 95%	p value				
ARS Sex: female Preoperative peripheral malperfusion	0.393 0.462 3.110	[0.206-0.748] [0.243-0.878] [1.203-8.040]	0.005 0.02 0.02				


ACQUIRED: AORTA

Limited root repair in acute type A aortic dissection is safe but results in increased risk of reoperation

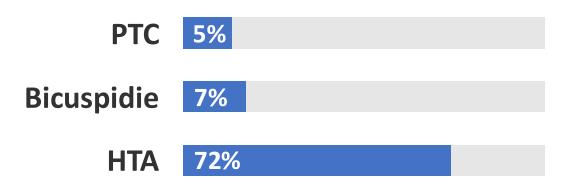
Peter Chiu, MD, MS, a,b Jeffrey Trojan, BA, Sarah Tsou, BA, Andrew B. Goldstone, MD, PhD, A,b Y. Joseph Woo, MD, and Michael P. Fischbein, MD, PhD

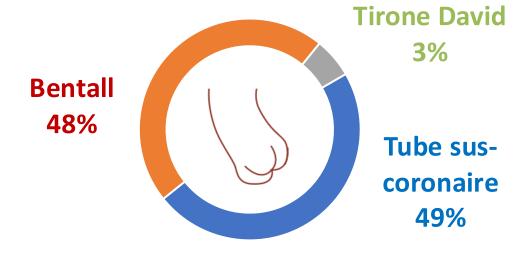


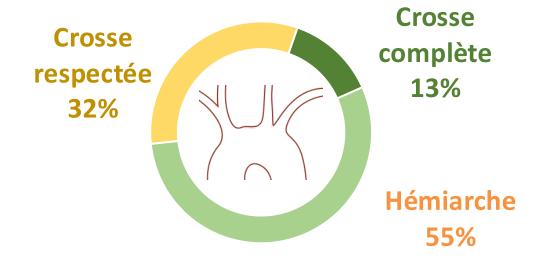
Aorte Distale

Matériel et méthodes

Patients opérés d'une dissection aortique de type A




Résultats : population et geste


360 patients

65 % d'hommes

Age médian = 60 ans

Mortalité opératoire

25%

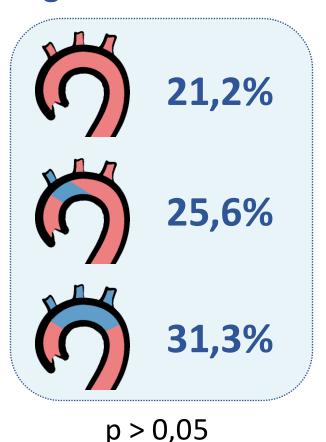
Décès avant J30

• Facteurs prédictifs de décès liés au patient

Age par année RR=1,05 ; p<0,0001

Ischémie périph pré-op RR=2,24 ; p=0,03

IDM pré-op RR=2,66 ; p=0,002


Etat de choc pré-op RR=1,865 ; p=0,01

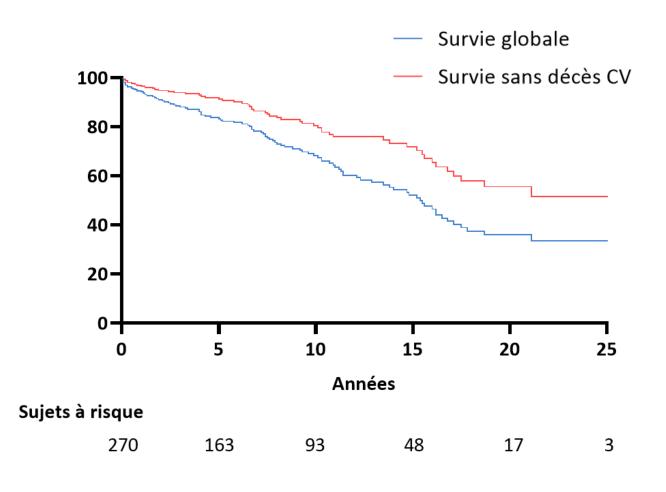
Facteurs prédictifs de décès liés à l'intervention

Tube sus-coronaire RR=2,29 ; p=0,002

Durée de clampage (par min) RR=1,013; p<0,0001

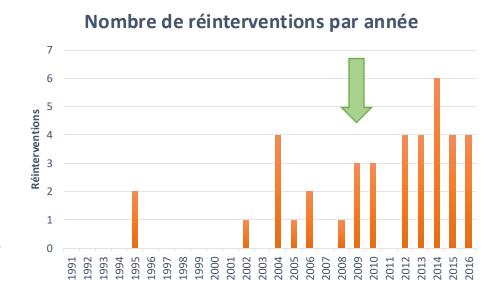
Mortalité opératoire selon le geste sur la crosse

Survie au long terme

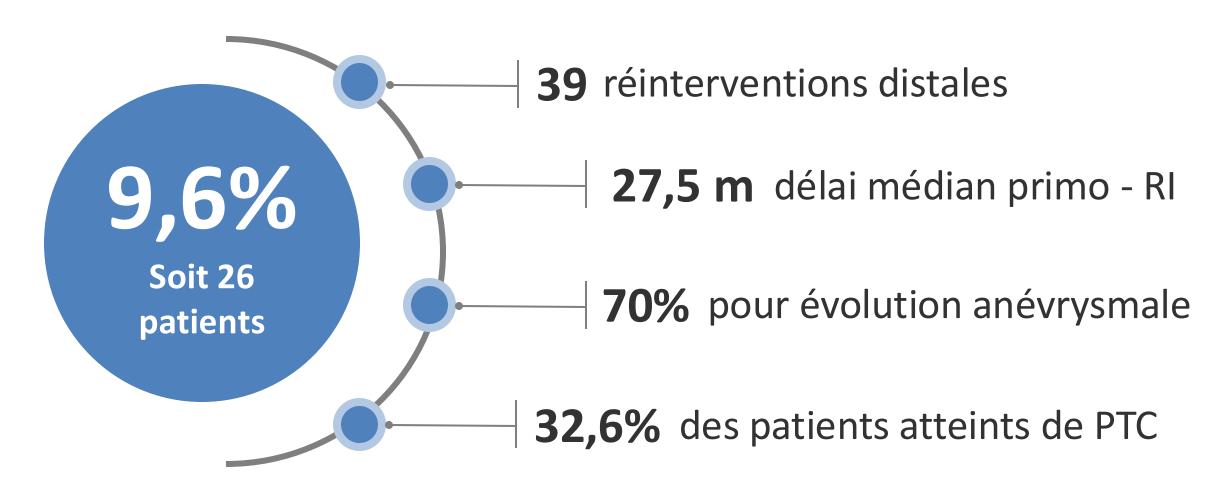

Suivi médian = **10,7 ans** Perdus de vue = **4,2**%

Survie globale corrigée 94% à 1 an ; 83% à 5 ans 68% à 10 ans

44% de décès d'origine cardiovasculaire



Tube sus-coronaire (RR=2,368; p=0,02)


Evolution des réinterventions

A partir de 2009 : mise en place d'un suivi multidisciplinaire et systématique de ces patients.

- Dépistage et traitement de l'HTA, du SAOS etc.
- Bilan cardiologique complet et surveillance scanographique
- Centralisation des informations
 Optimisation de la PEC

Réinterventions tardives sur l'aorte distale

N = 270

Réinterventions sur l'aorte distale

20

Endovasculaire

Crosse = 3 Crosse + ATD = 1 ATD = 13 Abdominale = 3 39
réinterventions

19

A ciel ouvert

Crosse = 9

Crosse + ATD = 1

ATD = 2

ATD + abdominale = 2

Abdominale = 5

3 décès soit 15% 2 évènements neuro

4 décès soit 21% 2 évènements neuro

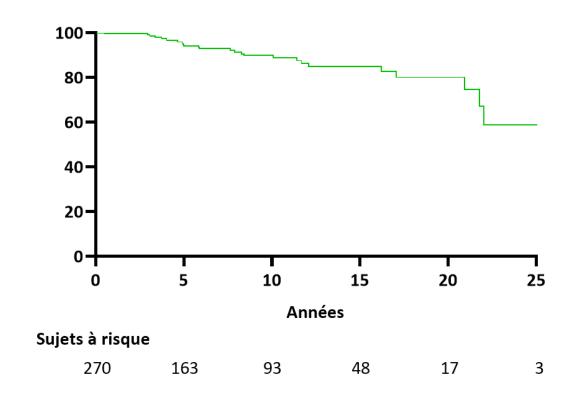
Réinterventions sur l'aorte distale

Endovasculaire

4 réinterventions

1 décès

1 évènement neuro



A ciel ouvert

10 réinterventions

7,1% de morbidité neurologique 7,1% de mortalité

Réinterventions sur l'aorte distale

Survie sans RI distale:

- à 1 an = 99,6%
- à 5 ans = 94,2%
- à 10 ans = 89,8%

Facteurs influençant le risque de RI

Age (RR = 0.96 par an ; p = 0.006)

PTC (RR = 4,53; p = 0,001)

Le remplacement de la crosse n'influençait pas le risque de RI distale.

Population suivie

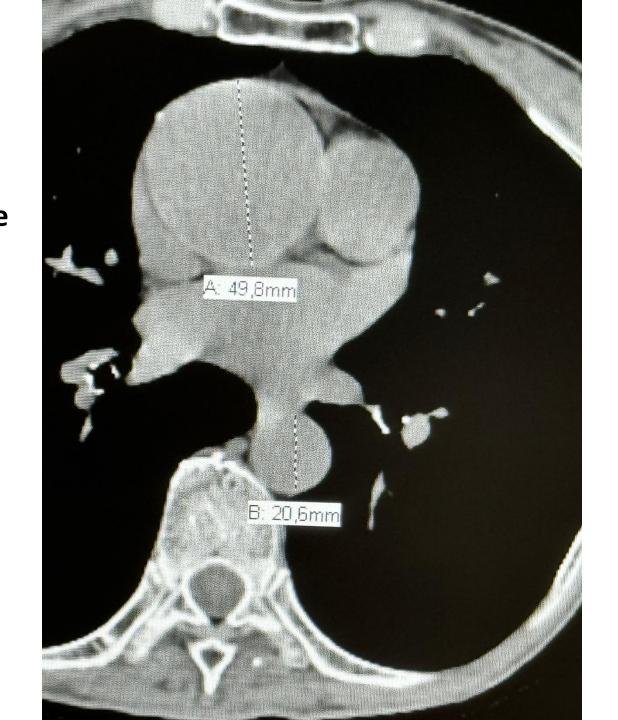
Faible taux de ré-intervention


• Chirurgie en condition programmée

Survie à 10 ans de 89% sans ré-intervention

• Femme 70 ans, HTA, 1m77, 54 kg

• Découverte fortuite dilatation Aorte Ascendante segment 1


Valve aortique semble tricuspide

HTA

Sao/Taille: 10,9 cm²/m

Aorte ascendante > 2 Aorte descendante

« Take home messages »

- 50 mm
 - 42-45 mm: « syndromiques »;
 - surface aortique/taille (>10cm²/m); Diam Ao/SC (>2,5cm/m²)
- Chirurgie conservatrice de la racine dans les formes « simples »
- Adulte jeune : intérêt du Ross modifié

- Dissection aortique, Hématome disséquant
 - Chirurgie de la racine et hémi-arche
 - Suivi « à vie » des patients

